积分成像
镜头(地质)
曲率
液晶
材料科学
焦距
电压
视角
液晶显示器
曲率半径
光学
光电子学
计算机科学
电气工程
人工智能
工程类
图像(数学)
物理
几何学
流量平均曲率
平均曲率
数学
作者
Wenwen Wang,Yuyan Peng,Xuyang Weng,Yanqiao Jin,Xiongtu Zhou,Qun Yan,Tailiang Guo,Chaoxing Wu,Yongai Zhang
出处
期刊:Liquid Crystals
[Informa]
日期:2023-04-24
卷期号:50 (11-12): 1666-1678
被引量:2
标识
DOI:10.1080/02678292.2023.2201575
摘要
ABSTRACTGlasses-free three-dimensional (3D) displays are being regarded as the key to the future of display that will redefine the display industry. Inspired by the curved screen, liquid crystal micro-lens arrays (LC MLAs) on flexible PET substrate with a radius of curvature of 5 cm was achieved. For demonstration, an integral imaging-based 2D/3D convertible display system is proposed by using the flexible LC MLAs (FLC MLAs) to switch its operation mode between 2D and 3D modes. When the FLC MLAs with an applied voltage are in the system, the prototype renders a matched 3D image and works in 3D mode. When the FLC MLAs do not have an applied voltage, the FLC MLAs are equivalent to glass, and the display system works in 2D mode. In addition, we also demonstrated that the FLC MLAs have a wider viewing angle than the flat integral imaging 3D display system. The depth of field ranges from 6.78 to 210.12 mm under low operating voltages of 3.4 to 3.1 Vrms, respectively. With its low voltage, thin structure, and adjustable focal length form factors, the developed display system can be integrated with off-the-shelf purchased flat panels, making it a promising option for portable electronics.KEYWORDS: Flexible liquid crystal micro-lens arraycurved integral imaging2D/3D convertibletunable focal length Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by National key research and development program [2022YFB3606603], Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China [2021ZZ130, 2020ZZ111, 2020ZZ113], the National Natural Science Foundation of Fujian Province, China [No. 2021J01577].
科研通智能强力驱动
Strongly Powered by AbleSci AI