计算机科学
特征(语言学)
分割
市场细分
不信任
人工智能
产品(数学)
选择(遗传算法)
特征选择
新产品开发
价值(数学)
机器学习
营销
数学
业务
哲学
语言学
政治学
法学
几何学
作者
Xin Hu,Ang Liu,Xiaopeng Li,Yun Dai,Masayuki Nakao
出处
期刊:CIRP Annals
[Elsevier]
日期:2023-01-01
卷期号:72 (1): 89-92
被引量:8
标识
DOI:10.1016/j.cirp.2023.03.004
摘要
AI can facilitate customer segmentation in product development. However, the black-box nature of AI often causes designers to distrust AI predictions. Explainable AI (XAI) is an emerging AI paradigm that can provide humanly understandable explanations about AI predictions. The outputs of XAI, feature-based and data-based explanations, can improve AI performance and designer trust in AI. A new framework is proposed to incorporate XAI explanations into customer segmentation. An experiment is conducted to validate the framework effectiveness. It indicates that AI performance can be enhanced by XAI, where feature-based explanations can facilitate feature selection and data-based explanations can uncover high-value datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI