COSST: Multi-organ Segmentation with Partially Labeled Datasets Using Comprehensive Supervisions and Self-training

计算机科学 分割 杠杆(统计) 人工智能 离群值 模式识别(心理学) 机器学习 基本事实 透视图(图形)
作者
Han Liu,Zhoubing Xu,Riqiang Gao,Hao Li,Jianing Wang,Guillaume Chabin,İpek Oğuz,Saša Grbić
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.14030
摘要

Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated. However, medical image datasets are often low in sample size and only partially labeled, i.e., only a subset of organs are annotated. Therefore, it is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential. In this paper, we systematically investigate the partial-label segmentation problem with theoretical and empirical analyses on the prior techniques. We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels. We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training. Concretely, we first train an initial unified model using two ground truth-based signals and then iteratively incorporate the pseudo label signal to the initial model using self-training. To mitigate performance degradation caused by unreliable pseudo labels, we assess the reliability of pseudo labels via outlier detection in latent space and exclude the most unreliable pseudo labels from each self-training iteration. Extensive experiments are conducted on one public and three private partial-label segmentation tasks over 12 CT datasets. Experimental results show that our proposed COSST achieves significant improvement over the baseline method, i.e., individual networks trained on each partially labeled dataset. Compared to the state-of-the-art partial-label segmentation methods, COSST demonstrates consistent superior performance on various segmentation tasks and with different training data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss发布了新的文献求助10
刚刚
正直沧海发布了新的文献求助10
1秒前
kentonchow应助米大王采纳,获得30
1秒前
波比大王完成签到,获得积分10
1秒前
香蕉觅云应助permanent采纳,获得30
3秒前
3秒前
姚yao完成签到,获得积分20
4秒前
4秒前
单薄熊猫完成签到 ,获得积分10
5秒前
5秒前
xiaohei发布了新的文献求助10
5秒前
hxx发布了新的文献求助10
5秒前
猴哥完成签到,获得积分20
5秒前
6秒前
小仙完成签到,获得积分10
6秒前
yzwhust发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
愤怒的乐松完成签到,获得积分10
7秒前
李健应助干雅柏采纳,获得10
8秒前
青年才俊发布了新的文献求助10
8秒前
小w完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
STIAN发布了新的文献求助10
9秒前
liang发布了新的文献求助10
9秒前
Elio完成签到,获得积分20
9秒前
Mic应助半分糖采纳,获得10
9秒前
yumi应助姚yao采纳,获得20
9秒前
张兰兰发布了新的文献求助10
9秒前
栗心完成签到,获得积分10
10秒前
美丽的周应助阔达宛凝采纳,获得10
10秒前
10秒前
小w关注了科研通微信公众号
10秒前
可乐完成签到,获得积分10
11秒前
12秒前
12秒前
Mic应助lina采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430333
求助须知:如何正确求助?哪些是违规求助? 4543541
关于积分的说明 14187728
捐赠科研通 4461680
什么是DOI,文献DOI怎么找? 2446276
邀请新用户注册赠送积分活动 1437642
关于科研通互助平台的介绍 1414420