COSST: Multi-organ Segmentation with Partially Labeled Datasets Using Comprehensive Supervisions and Self-training

计算机科学 分割 杠杆(统计) 人工智能 离群值 模式识别(心理学) 机器学习 基本事实 透视图(图形)
作者
Han Liu,Zhoubing Xu,Riqiang Gao,Hao Li,Jianing Wang,Guillaume Chabin,İpek Oğuz,Saša Grbić
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.14030
摘要

Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated. However, medical image datasets are often low in sample size and only partially labeled, i.e., only a subset of organs are annotated. Therefore, it is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential. In this paper, we systematically investigate the partial-label segmentation problem with theoretical and empirical analyses on the prior techniques. We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels. We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training. Concretely, we first train an initial unified model using two ground truth-based signals and then iteratively incorporate the pseudo label signal to the initial model using self-training. To mitigate performance degradation caused by unreliable pseudo labels, we assess the reliability of pseudo labels via outlier detection in latent space and exclude the most unreliable pseudo labels from each self-training iteration. Extensive experiments are conducted on one public and three private partial-label segmentation tasks over 12 CT datasets. Experimental results show that our proposed COSST achieves significant improvement over the baseline method, i.e., individual networks trained on each partially labeled dataset. Compared to the state-of-the-art partial-label segmentation methods, COSST demonstrates consistent superior performance on various segmentation tasks and with different training data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lilili发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
yoxi应助lx840518采纳,获得20
1秒前
1秒前
nice完成签到,获得积分20
2秒前
2秒前
2秒前
田様应助zhuge采纳,获得10
3秒前
充电宝应助yu采纳,获得10
3秒前
3秒前
CodeCraft应助zfcc采纳,获得10
4秒前
丘比特应助黄bb采纳,获得10
4秒前
4秒前
lily发布了新的文献求助10
5秒前
ruby完成签到,获得积分10
6秒前
忧郁凌波完成签到,获得积分10
6秒前
传奇3应助elfa采纳,获得30
6秒前
Parrot_PAI完成签到,获得积分10
8秒前
jason0023发布了新的文献求助10
8秒前
ui7发布了新的文献求助10
8秒前
慕青应助yyy采纳,获得10
9秒前
9秒前
JamesPei应助gkw采纳,获得10
10秒前
10秒前
竹子完成签到,获得积分10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
小马甲应助若离采纳,获得10
13秒前
科研通AI6应助lqz07采纳,获得10
13秒前
格格巫发布了新的文献求助10
14秒前
14秒前
快乐小子发布了新的文献求助10
14秒前
大力半鬼完成签到,获得积分10
14秒前
幽默枫发布了新的文献求助10
14秒前
14秒前
16秒前
16秒前
六根清净发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548256
关于积分的说明 14212896
捐赠科研通 4468451
什么是DOI,文献DOI怎么找? 2449037
邀请新用户注册赠送积分活动 1439959
关于科研通互助平台的介绍 1416594