COSST: Multi-organ Segmentation with Partially Labeled Datasets Using Comprehensive Supervisions and Self-training

计算机科学 分割 杠杆(统计) 人工智能 离群值 模式识别(心理学) 机器学习 基本事实 透视图(图形)
作者
Han Liu,Zhoubing Xu,Riqiang Gao,Hao Li,Jianing Wang,Guillaume Chabin,İpek Oğuz,Saša Grbić
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.14030
摘要

Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated. However, medical image datasets are often low in sample size and only partially labeled, i.e., only a subset of organs are annotated. Therefore, it is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential. In this paper, we systematically investigate the partial-label segmentation problem with theoretical and empirical analyses on the prior techniques. We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels. We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training. Concretely, we first train an initial unified model using two ground truth-based signals and then iteratively incorporate the pseudo label signal to the initial model using self-training. To mitigate performance degradation caused by unreliable pseudo labels, we assess the reliability of pseudo labels via outlier detection in latent space and exclude the most unreliable pseudo labels from each self-training iteration. Extensive experiments are conducted on one public and three private partial-label segmentation tasks over 12 CT datasets. Experimental results show that our proposed COSST achieves significant improvement over the baseline method, i.e., individual networks trained on each partially labeled dataset. Compared to the state-of-the-art partial-label segmentation methods, COSST demonstrates consistent superior performance on various segmentation tasks and with different training data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助加油吧弟弟采纳,获得30
刚刚
白了个白发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
mochi完成签到,获得积分10
5秒前
ding应助Chaimengdi采纳,获得10
5秒前
5秒前
Eva完成签到,获得积分10
5秒前
6秒前
leopard发布了新的文献求助10
6秒前
慧慧完成签到,获得积分10
6秒前
yuuka发布了新的文献求助10
6秒前
chenyuanrui_116完成签到,获得积分20
6秒前
7秒前
xili完成签到,获得积分10
7秒前
8秒前
8秒前
zm完成签到,获得积分10
8秒前
七七发布了新的文献求助30
9秒前
10秒前
waws完成签到,获得积分10
11秒前
12秒前
duoduo发布了新的文献求助10
13秒前
14秒前
罗dd发布了新的文献求助30
14秒前
斯文铃铛发布了新的文献求助10
14秒前
15秒前
白了个白完成签到,获得积分10
16秒前
终极007完成签到 ,获得积分10
16秒前
17秒前
simpleboy发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
18秒前
杜钿湄完成签到 ,获得积分10
21秒前
不要长胖发布了新的文献求助10
21秒前
C女士完成签到 ,获得积分20
22秒前
浅眸流年完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397179
求助须知:如何正确求助?哪些是违规求助? 4517412
关于积分的说明 14063874
捐赠科研通 4429328
什么是DOI,文献DOI怎么找? 2432273
邀请新用户注册赠送积分活动 1424816
关于科研通互助平台的介绍 1403865