COSST: Multi-organ Segmentation with Partially Labeled Datasets Using Comprehensive Supervisions and Self-training

计算机科学 分割 杠杆(统计) 人工智能 离群值 模式识别(心理学) 机器学习 基本事实 透视图(图形)
作者
Han Liu,Zhoubing Xu,Riqiang Gao,Hao Li,Jianing Wang,Guillaume Chabin,İpek Oğuz,Saša Grbić
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.14030
摘要

Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated. However, medical image datasets are often low in sample size and only partially labeled, i.e., only a subset of organs are annotated. Therefore, it is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential. In this paper, we systematically investigate the partial-label segmentation problem with theoretical and empirical analyses on the prior techniques. We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels. We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training. Concretely, we first train an initial unified model using two ground truth-based signals and then iteratively incorporate the pseudo label signal to the initial model using self-training. To mitigate performance degradation caused by unreliable pseudo labels, we assess the reliability of pseudo labels via outlier detection in latent space and exclude the most unreliable pseudo labels from each self-training iteration. Extensive experiments are conducted on one public and three private partial-label segmentation tasks over 12 CT datasets. Experimental results show that our proposed COSST achieves significant improvement over the baseline method, i.e., individual networks trained on each partially labeled dataset. Compared to the state-of-the-art partial-label segmentation methods, COSST demonstrates consistent superior performance on various segmentation tasks and with different training data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣翠霜完成签到,获得积分10
1秒前
2秒前
Novice6354完成签到 ,获得积分10
2秒前
杰克李李完成签到,获得积分10
2秒前
Lucas应助火星上的羞花采纳,获得10
2秒前
fox完成签到 ,获得积分10
3秒前
4秒前
5秒前
aaaa完成签到 ,获得积分10
5秒前
仁爱水之完成签到 ,获得积分10
7秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助150
10秒前
获野千发布了新的文献求助10
10秒前
向日葵完成签到,获得积分10
12秒前
gao完成签到 ,获得积分10
13秒前
小梦完成签到,获得积分10
13秒前
ghjghk发布了新的文献求助10
14秒前
一二完成签到,获得积分10
16秒前
LLLKJ完成签到,获得积分10
17秒前
lxcy0612完成签到,获得积分10
18秒前
zhangxin完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
晓风完成签到,获得积分10
20秒前
小点完成签到 ,获得积分10
20秒前
获野千完成签到 ,获得积分10
22秒前
鸽子完成签到 ,获得积分10
23秒前
24秒前
彭于彦祖应助科研通管家采纳,获得150
24秒前
彭于彦祖应助科研通管家采纳,获得50
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
日天的马铃薯完成签到,获得积分10
24秒前
lit应助科研通管家采纳,获得10
24秒前
lit应助科研通管家采纳,获得10
24秒前
24秒前
我说我话完成签到 ,获得积分10
25秒前
27秒前
文龙完成签到 ,获得积分10
31秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
Sindy完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044644
求助须知:如何正确求助?哪些是违规求助? 4274226
关于积分的说明 13323416
捐赠科研通 4087927
什么是DOI,文献DOI怎么找? 2236588
邀请新用户注册赠送积分活动 1244008
关于科研通互助平台的介绍 1172033