COSST: Multi-organ Segmentation with Partially Labeled Datasets Using Comprehensive Supervisions and Self-training

计算机科学 分割 杠杆(统计) 人工智能 离群值 模式识别(心理学) 机器学习 基本事实 透视图(图形)
作者
Han Liu,Zhoubing Xu,Riqiang Gao,Hao Li,Jianing Wang,Guillaume Chabin,İpek Oğuz,Saša Grbić
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.14030
摘要

Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated. However, medical image datasets are often low in sample size and only partially labeled, i.e., only a subset of organs are annotated. Therefore, it is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential. In this paper, we systematically investigate the partial-label segmentation problem with theoretical and empirical analyses on the prior techniques. We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels. We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training. Concretely, we first train an initial unified model using two ground truth-based signals and then iteratively incorporate the pseudo label signal to the initial model using self-training. To mitigate performance degradation caused by unreliable pseudo labels, we assess the reliability of pseudo labels via outlier detection in latent space and exclude the most unreliable pseudo labels from each self-training iteration. Extensive experiments are conducted on one public and three private partial-label segmentation tasks over 12 CT datasets. Experimental results show that our proposed COSST achieves significant improvement over the baseline method, i.e., individual networks trained on each partially labeled dataset. Compared to the state-of-the-art partial-label segmentation methods, COSST demonstrates consistent superior performance on various segmentation tasks and with different training data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小白完成签到,获得积分10
1秒前
2秒前
5秒前
5秒前
5秒前
6秒前
英姑应助yolo采纳,获得10
6秒前
6秒前
maji发布了新的文献求助10
7秒前
爱学习的小白完成签到 ,获得积分10
8秒前
10秒前
JJ发布了新的文献求助10
11秒前
12秒前
考研小白发布了新的文献求助10
12秒前
13秒前
勤劳nannan完成签到,获得积分10
14秒前
蓝莓酱完成签到,获得积分0
14秒前
15秒前
李健的小迷弟应助在远方采纳,获得10
16秒前
hhhh发布了新的文献求助10
17秒前
风筝鱼发布了新的文献求助10
19秒前
sin30cos60发布了新的文献求助10
19秒前
领导范儿应助坚强的初夏采纳,获得10
19秒前
考研小白完成签到,获得积分10
19秒前
21秒前
22秒前
看看发布了新的文献求助10
23秒前
张益萌完成签到 ,获得积分0
26秒前
QQ发布了新的文献求助10
28秒前
慕青应助在远方采纳,获得10
30秒前
30秒前
欣喜大门发布了新的文献求助10
31秒前
32秒前
nkdss发布了新的文献求助10
34秒前
9579发布了新的文献求助20
34秒前
34秒前
科研王发布了新的文献求助10
38秒前
aaaaaa发布了新的文献求助10
39秒前
苏小福发布了新的文献求助30
40秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343455
求助须知:如何正确求助?哪些是违规求助? 2970510
关于积分的说明 8644296
捐赠科研通 2650587
什么是DOI,文献DOI怎么找? 1451426
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661536