清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

μ-Net: Medical image segmentation using efficient and effective deep supervision

深度学习 计算机科学 人工智能 分割 水准点(测量) 机器学习 相似性(几何) 监督学习 人工神经网络 图像(数学) 大地测量学 地理
作者
Yuan Di,Zhenghua Xu,Biao Tian,Hening Wang,Yuefu Zhan,Thomas Lukasiewicz
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:160: 106963-106963 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.106963
摘要

Although the existing deep supervised solutions have achieved some great successes in medical image segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained by very different convolution or deconvolution processes, the intermediate masks and predictions in deep supervised baselines usually contain semantics with different depth, which thus hinders the models' learning capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised segmentation model, called μ-Net, to achieve not only effective but also efficient deep supervised medical image segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information and also speed up the convergence in training. Finally, three different types of μ-Net-based deep supervision strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research in deep supervised learning. Experimental studies on four public benchmark datasets show that μ-Net greatly outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder, and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17852573662完成签到,获得积分10
19秒前
muriel完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
qdlsc完成签到,获得积分10
2分钟前
所所应助qdlsc采纳,获得10
2分钟前
2分钟前
qdlsc发布了新的文献求助10
2分钟前
2分钟前
迅速的月光完成签到 ,获得积分10
2分钟前
实力不允许完成签到 ,获得积分10
2分钟前
2分钟前
Sandy完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
爱静静举报秦秦秦求助涉嫌违规
3分钟前
4分钟前
4分钟前
LTJ完成签到,获得积分10
4分钟前
机灵哲瀚完成签到,获得积分10
4分钟前
4分钟前
4分钟前
通科研完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
方白秋完成签到,获得积分10
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142