μ-Net: Medical image segmentation using efficient and effective deep supervision

深度学习 计算机科学 人工智能 分割 水准点(测量) 机器学习 相似性(几何) 监督学习 人工神经网络 图像(数学) 大地测量学 地理
作者
Yuan Di,Zhenghua Xu,Biao Tian,Hening Wang,Yuefu Zhan,Thomas Lukasiewicz
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:160: 106963-106963 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.106963
摘要

Although the existing deep supervised solutions have achieved some great successes in medical image segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained by very different convolution or deconvolution processes, the intermediate masks and predictions in deep supervised baselines usually contain semantics with different depth, which thus hinders the models' learning capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised segmentation model, called μ-Net, to achieve not only effective but also efficient deep supervised medical image segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information and also speed up the convergence in training. Finally, three different types of μ-Net-based deep supervision strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research in deep supervised learning. Experimental studies on four public benchmark datasets show that μ-Net greatly outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder, and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助stan采纳,获得10
1秒前
ZQD发布了新的文献求助10
1秒前
一点不懂发布了新的文献求助20
2秒前
今后应助yqhide采纳,获得10
2秒前
Y哦莫哦莫完成签到,获得积分10
2秒前
彭于晏应助隐形霸采纳,获得10
2秒前
薰衣草发布了新的文献求助10
3秒前
polki完成签到,获得积分10
3秒前
搜集达人应助百甲采纳,获得10
4秒前
sky发布了新的文献求助10
4秒前
浮游应助myc采纳,获得10
5秒前
5秒前
29发布了新的文献求助10
5秒前
5秒前
7秒前
捏个小雪团完成签到 ,获得积分10
8秒前
啦啦啦完成签到,获得积分10
9秒前
10秒前
yyygc完成签到,获得积分10
10秒前
10秒前
11秒前
搞怪灯泡完成签到,获得积分10
11秒前
顾矜应助三百一十四采纳,获得10
11秒前
12秒前
畅快的文龙完成签到,获得积分10
12秒前
温水完成签到 ,获得积分10
12秒前
12秒前
lanming发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
阿湫发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
CT民工完成签到,获得积分10
16秒前
17秒前
树袋熊和考拉完成签到,获得积分10
17秒前
完美世界应助myn1990采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109721
求助须知:如何正确求助?哪些是违规求助? 4318341
关于积分的说明 13454127
捐赠科研通 4148336
什么是DOI,文献DOI怎么找? 2273150
邀请新用户注册赠送积分活动 1275295
关于科研通互助平台的介绍 1213562