μ-Net: Medical image segmentation using efficient and effective deep supervision

深度学习 计算机科学 人工智能 分割 水准点(测量) 机器学习 相似性(几何) 监督学习 人工神经网络 图像(数学) 大地测量学 地理
作者
Yuan Di,Zhenghua Xu,Biao Tian,Hening Wang,Yuefu Zhan,Thomas Lukasiewicz
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:160: 106963-106963 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.106963
摘要

Although the existing deep supervised solutions have achieved some great successes in medical image segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained by very different convolution or deconvolution processes, the intermediate masks and predictions in deep supervised baselines usually contain semantics with different depth, which thus hinders the models' learning capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised segmentation model, called μ-Net, to achieve not only effective but also efficient deep supervised medical image segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information and also speed up the convergence in training. Finally, three different types of μ-Net-based deep supervision strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research in deep supervised learning. Experimental studies on four public benchmark datasets show that μ-Net greatly outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder, and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助纳川采纳,获得10
1秒前
南晴完成签到 ,获得积分20
1秒前
脑洞疼应助Li采纳,获得10
1秒前
qbxiaojie发布了新的文献求助10
1秒前
2秒前
briefyark完成签到,获得积分10
2秒前
2秒前
柠檬不萌发布了新的文献求助20
3秒前
3秒前
Hello应助Jerry采纳,获得10
3秒前
faustss完成签到,获得积分10
3秒前
li发布了新的文献求助10
3秒前
3秒前
kongzy完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
科目三应助YBR采纳,获得10
5秒前
miumiuka完成签到,获得积分10
5秒前
momo123发布了新的文献求助10
5秒前
5秒前
pwang_ecust发布了新的文献求助10
6秒前
6秒前
美丽梦桃发布了新的文献求助10
6秒前
yznfly应助班班采纳,获得20
7秒前
7秒前
和谐的数据线完成签到,获得积分10
7秒前
共享精神应助RNAPW采纳,获得10
7秒前
7秒前
8秒前
顾矜应助Fjun采纳,获得10
8秒前
领导范儿应助小李采纳,获得10
8秒前
linnnna发布了新的文献求助10
8秒前
大模型应助Chali采纳,获得10
9秒前
9秒前
9秒前
星辰大海应助小夭采纳,获得10
9秒前
希望天下0贩的0应助家伟采纳,获得10
9秒前
上官若男应助Lorry采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
yy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095