μ-Net: Medical image segmentation using efficient and effective deep supervision

深度学习 计算机科学 人工智能 分割 水准点(测量) 机器学习 相似性(几何) 监督学习 人工神经网络 图像(数学) 大地测量学 地理
作者
Yuan Di,Zhenghua Xu,Biao Tian,Hening Wang,Yuefu Zhan,Thomas Lukasiewicz
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:160: 106963-106963 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.106963
摘要

Although the existing deep supervised solutions have achieved some great successes in medical image segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained by very different convolution or deconvolution processes, the intermediate masks and predictions in deep supervised baselines usually contain semantics with different depth, which thus hinders the models' learning capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised segmentation model, called μ-Net, to achieve not only effective but also efficient deep supervised medical image segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information and also speed up the convergence in training. Finally, three different types of μ-Net-based deep supervision strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research in deep supervised learning. Experimental studies on four public benchmark datasets show that μ-Net greatly outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder, and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小盼虫发布了新的文献求助10
2秒前
2秒前
搜集达人应助娟姐采纳,获得20
3秒前
YY完成签到,获得积分10
3秒前
柒柒球发布了新的文献求助10
4秒前
5秒前
wanci应助大兵采纳,获得10
6秒前
6秒前
ll发布了新的文献求助10
7秒前
8秒前
baibai发布了新的文献求助10
9秒前
皮皮卡发布了新的文献求助10
9秒前
10秒前
炙热灰狼发布了新的文献求助30
10秒前
打打应助zzyyy采纳,获得10
11秒前
FashionBoy应助guozizi采纳,获得10
11秒前
畅快芾完成签到,获得积分10
12秒前
大气的fgyyhjj完成签到 ,获得积分10
13秒前
赘婿应助王大京采纳,获得10
14秒前
李健应助书祝采纳,获得10
15秒前
kuiuLinvk发布了新的文献求助10
18秒前
UUU完成签到,获得积分10
20秒前
ICE完成签到,获得积分10
22秒前
24秒前
yx_cheng应助UUU采纳,获得100
24秒前
科研女郎完成签到 ,获得积分10
24秒前
24秒前
24秒前
25秒前
王富贵啊完成签到,获得积分10
27秒前
wh雨发布了新的文献求助10
29秒前
29秒前
书祝发布了新的文献求助10
29秒前
潘潘发布了新的文献求助10
29秒前
拜拜发布了新的文献求助10
30秒前
果粒橙完成签到 ,获得积分10
31秒前
情怀应助aqz采纳,获得10
32秒前
王大京发布了新的文献求助10
33秒前
34秒前
孙燕应助曲奇采纳,获得30
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075