μ-Net: Medical image segmentation using efficient and effective deep supervision

深度学习 计算机科学 人工智能 分割 水准点(测量) 机器学习 相似性(几何) 监督学习 人工神经网络 图像(数学) 大地测量学 地理
作者
Yuan Di,Zhenghua Xu,Biao Tian,Hening Wang,Yuefu Zhan,Thomas Lukasiewicz
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:160: 106963-106963 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.106963
摘要

Although the existing deep supervised solutions have achieved some great successes in medical image segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained by very different convolution or deconvolution processes, the intermediate masks and predictions in deep supervised baselines usually contain semantics with different depth, which thus hinders the models' learning capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised segmentation model, called μ-Net, to achieve not only effective but also efficient deep supervised medical image segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information and also speed up the convergence in training. Finally, three different types of μ-Net-based deep supervision strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research in deep supervised learning. Experimental studies on four public benchmark datasets show that μ-Net greatly outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder, and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
小马甲应助小萝卜1234采纳,获得10
2秒前
2秒前
感动帅哥完成签到,获得积分10
4秒前
left_right完成签到,获得积分10
5秒前
李文俊的太祖王振全完成签到,获得积分10
6秒前
dengdeng发布了新的文献求助10
6秒前
minrui发布了新的文献求助10
6秒前
槿川完成签到,获得积分10
8秒前
科研通AI6应助快乐薯条采纳,获得10
9秒前
爆米花应助wangliangyu采纳,获得10
10秒前
白k完成签到,获得积分20
10秒前
小蘑菇应助斯文海豚采纳,获得10
11秒前
王誉霖完成签到,获得积分10
11秒前
科研狗-加班族完成签到,获得积分10
12秒前
13秒前
13秒前
大个应助小米采纳,获得10
15秒前
Lee完成签到,获得积分10
17秒前
hihihihihi完成签到,获得积分10
22秒前
24秒前
25秒前
李健的小迷弟应助森距离采纳,获得10
25秒前
李文俊是我太孙完成签到,获得积分10
26秒前
斯文海豚完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
lucky完成签到,获得积分10
28秒前
大美发布了新的文献求助10
29秒前
张子豪完成签到,获得积分10
29秒前
Anna发布了新的文献求助10
30秒前
31秒前
白开水完成签到,获得积分10
33秒前
33秒前
深情安青应助疏桐采纳,获得10
34秒前
tkxfy完成签到,获得积分10
37秒前
大胆的白卉完成签到,获得积分10
38秒前
小悦完成签到,获得积分10
38秒前
rita完成签到,获得积分10
38秒前
十十完成签到,获得积分10
39秒前
40秒前
超哥完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495416
求助须知:如何正确求助?哪些是违规求助? 4593079
关于积分的说明 14439690
捐赠科研通 4525895
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464575
关于科研通互助平台的介绍 1437425