μ-Net: Medical image segmentation using efficient and effective deep supervision

深度学习 计算机科学 人工智能 分割 水准点(测量) 机器学习 相似性(几何) 监督学习 人工神经网络 图像(数学) 大地测量学 地理
作者
Yuan Di,Zhenghua Xu,Biao Tian,Hening Wang,Yuefu Zhan,Thomas Lukasiewicz
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:160: 106963-106963 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.106963
摘要

Although the existing deep supervised solutions have achieved some great successes in medical image segmentation, they have the following shortcomings; (i) semantic difference problem: since they are obtained by very different convolution or deconvolution processes, the intermediate masks and predictions in deep supervised baselines usually contain semantics with different depth, which thus hinders the models' learning capabilities; (ii) low learning efficiency problem: additional supervision signals will inevitably make the training of the models more time-consuming. Therefore, in this work, we first propose two deep supervised learning strategies, U-Net-Deep and U-Net-Auto, to overcome the semantic difference problem. Then, to resolve the low learning efficiency problem, upon the above two strategies, we further propose a new deep supervised segmentation model, called μ-Net, to achieve not only effective but also efficient deep supervised medical image segmentation by introducing a tied-weight decoder to generate pseudo-labels with more diverse information and also speed up the convergence in training. Finally, three different types of μ-Net-based deep supervision strategies are explored and a Similarity Principle of Deep Supervision is further derived to guide future research in deep supervised learning. Experimental studies on four public benchmark datasets show that μ-Net greatly outperforms all the state-of-the-art baselines, including the state-of-the-art deeply supervised segmentation models, in terms of both effectiveness and efficiency. Ablation studies sufficiently prove the soundness of the proposed Similarity Principle of Deep Supervision, the necessity and effectiveness of the tied-weight decoder, and using both the segmentation and reconstruction pseudo-labels for deep supervised learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大本完成签到,获得积分10
1秒前
ylf完成签到,获得积分10
1秒前
1秒前
Oil完成签到,获得积分10
1秒前
1秒前
张姣姣完成签到,获得积分10
2秒前
xiyueQAQ完成签到,获得积分10
2秒前
3秒前
3秒前
英勇冬瓜完成签到,获得积分10
3秒前
3秒前
3秒前
打打应助DrLin采纳,获得10
3秒前
怡然花卷发布了新的文献求助10
4秒前
4秒前
葡萄小伊ovo完成签到 ,获得积分10
4秒前
4秒前
呆萌菲音发布了新的文献求助10
4秒前
啦啦啦123发布了新的文献求助10
4秒前
5秒前
深情安青应助yu采纳,获得10
5秒前
Zenobia完成签到,获得积分10
5秒前
在水一方应助曾无忧采纳,获得10
5秒前
xiaoxiaoxiao完成签到,获得积分10
5秒前
笨笨山芙完成签到 ,获得积分10
5秒前
6秒前
李爱国应助联合工程采纳,获得10
6秒前
6秒前
顾矜应助Lze采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
李爱国应助duoduo采纳,获得10
8秒前
科研通AI6应助郭露露采纳,获得10
8秒前
Jasper应助Oil采纳,获得10
8秒前
领导范儿应助dhppp采纳,获得10
9秒前
9秒前
善良耳机完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017