Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons

肌腱 细胞外基质 肌腱病 微尺度化学 机械转化 糖胺聚糖 医学 解剖 细胞生物学 生物 心理学 数学教育
作者
Patrick M. Muljadi,Nelly Andarawis‐Puri
出处
期刊:Journal of Biomechanics [Elsevier]
卷期号:152: 111584-111584
标识
DOI:10.1016/j.jbiomech.2023.111584
摘要

Tendinopathies are common injuries that typically occur from overuse and fatigue. Treatments target late-stage symptoms with limited success, leading to high rates of reinjury. Early intervention could halt tendinopathy progression to rupture but requires a better understanding of the biomechanical environment associated with early-stage disease. While fatigue injured tendons are further damaged by exercise that is initiated immediately after onset of injury, exercise that is initiated after a brief delay promotes repair. Similar macroscale mechanical properties and collagen damage throughout this delay period suggests that microscale, non-collagenous matrix changes after fatigue injury modulate tendon mechanotransduction and shifts the exercise response from detrimental to reparative. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are increased during chronic tendinopathy, but their role in early-stage disease is unknown. We hypothesized that increased GAGs from fatigue injury modulate viscoelasticity and microscale strains to enable repair from exercise. Various GAG types were increased in the weeks after onset of fatigue injury in the extracellular and pericellular matrices of rat patellar tendons. Enzymatic removal of GAGs from these fatigued tendons increased microscale shear strain, suggesting that GAGs modulate the cell microenvironment after fatigue injury. GAG removal decreased dynamic modulus in the toe region and decreased loss tangent in the linear region of the stress-strain curve in fatigued tendons, suggesting the GAG increase modulates tendon multiscale mechanics and viscoelasticity during fiber uncrimping and fibril sliding and strain transfer. GAGs may influence repair in response to exercise and could serve as a therapeutic target for tendinopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
Abner完成签到,获得积分10
1秒前
小蘑菇应助张三采纳,获得10
1秒前
2秒前
chang发布了新的文献求助10
2秒前
斯文败类应助Lorry采纳,获得10
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
pinkham_chen完成签到,获得积分10
3秒前
4秒前
友好的绮彤完成签到 ,获得积分10
4秒前
kongzy发布了新的文献求助10
4秒前
6秒前
媛肖发布了新的文献求助20
6秒前
Xcj完成签到,获得积分10
6秒前
7秒前
Owen应助纳川采纳,获得10
8秒前
南晴完成签到 ,获得积分20
8秒前
脑洞疼应助Li采纳,获得10
8秒前
qbxiaojie发布了新的文献求助10
8秒前
9秒前
briefyark完成签到,获得积分10
9秒前
9秒前
柠檬不萌发布了新的文献求助20
10秒前
10秒前
Hello应助Jerry采纳,获得10
10秒前
faustss完成签到,获得积分10
10秒前
li发布了新的文献求助10
10秒前
10秒前
kongzy完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
科目三应助YBR采纳,获得10
12秒前
miumiuka完成签到,获得积分10
12秒前
momo123发布了新的文献求助10
12秒前
12秒前
pwang_ecust发布了新的文献求助10
13秒前
13秒前
美丽梦桃发布了新的文献求助10
13秒前
yznfly应助班班采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095