Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons

肌腱 细胞外基质 肌腱病 微尺度化学 机械转化 糖胺聚糖 医学 解剖 细胞生物学 生物 心理学 数学教育
作者
Patrick M. Muljadi,Nelly Andarawis‐Puri
出处
期刊:Journal of Biomechanics [Elsevier]
卷期号:152: 111584-111584
标识
DOI:10.1016/j.jbiomech.2023.111584
摘要

Tendinopathies are common injuries that typically occur from overuse and fatigue. Treatments target late-stage symptoms with limited success, leading to high rates of reinjury. Early intervention could halt tendinopathy progression to rupture but requires a better understanding of the biomechanical environment associated with early-stage disease. While fatigue injured tendons are further damaged by exercise that is initiated immediately after onset of injury, exercise that is initiated after a brief delay promotes repair. Similar macroscale mechanical properties and collagen damage throughout this delay period suggests that microscale, non-collagenous matrix changes after fatigue injury modulate tendon mechanotransduction and shifts the exercise response from detrimental to reparative. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are increased during chronic tendinopathy, but their role in early-stage disease is unknown. We hypothesized that increased GAGs from fatigue injury modulate viscoelasticity and microscale strains to enable repair from exercise. Various GAG types were increased in the weeks after onset of fatigue injury in the extracellular and pericellular matrices of rat patellar tendons. Enzymatic removal of GAGs from these fatigued tendons increased microscale shear strain, suggesting that GAGs modulate the cell microenvironment after fatigue injury. GAG removal decreased dynamic modulus in the toe region and decreased loss tangent in the linear region of the stress-strain curve in fatigued tendons, suggesting the GAG increase modulates tendon multiscale mechanics and viscoelasticity during fiber uncrimping and fibril sliding and strain transfer. GAGs may influence repair in response to exercise and could serve as a therapeutic target for tendinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乖发布了新的文献求助10
1秒前
水水发布了新的文献求助10
2秒前
SC武完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
赵拉弟发布了新的文献求助20
3秒前
哦啦啦发布了新的文献求助30
3秒前
5秒前
army77发布了新的文献求助10
5秒前
鑫xin发布了新的文献求助10
5秒前
5秒前
小晋发布了新的文献求助10
6秒前
6秒前
anan完成签到 ,获得积分10
6秒前
搜集达人应助犹豫的云朵采纳,获得10
7秒前
二一完成签到,获得积分10
7秒前
邹友亮完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
王聪发布了新的文献求助10
9秒前
10秒前
充电宝应助dan1029采纳,获得10
10秒前
10秒前
11秒前
丘比特应助小乖采纳,获得10
11秒前
ll发布了新的文献求助10
11秒前
13秒前
把妹王发布了新的文献求助10
13秒前
包子发布了新的文献求助10
14秒前
开心惜梦完成签到,获得积分20
14秒前
14秒前
Lupin完成签到,获得积分10
14秒前
krkr完成签到,获得积分20
15秒前
小药童应助科研通管家采纳,获得10
15秒前
Tonson应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940