Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons

肌腱 细胞外基质 肌腱病 微尺度化学 机械转化 糖胺聚糖 医学 解剖 细胞生物学 生物 心理学 数学教育
作者
Patrick M. Muljadi,Nelly Andarawis‐Puri
出处
期刊:Journal of Biomechanics [Elsevier]
卷期号:152: 111584-111584
标识
DOI:10.1016/j.jbiomech.2023.111584
摘要

Tendinopathies are common injuries that typically occur from overuse and fatigue. Treatments target late-stage symptoms with limited success, leading to high rates of reinjury. Early intervention could halt tendinopathy progression to rupture but requires a better understanding of the biomechanical environment associated with early-stage disease. While fatigue injured tendons are further damaged by exercise that is initiated immediately after onset of injury, exercise that is initiated after a brief delay promotes repair. Similar macroscale mechanical properties and collagen damage throughout this delay period suggests that microscale, non-collagenous matrix changes after fatigue injury modulate tendon mechanotransduction and shifts the exercise response from detrimental to reparative. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are increased during chronic tendinopathy, but their role in early-stage disease is unknown. We hypothesized that increased GAGs from fatigue injury modulate viscoelasticity and microscale strains to enable repair from exercise. Various GAG types were increased in the weeks after onset of fatigue injury in the extracellular and pericellular matrices of rat patellar tendons. Enzymatic removal of GAGs from these fatigued tendons increased microscale shear strain, suggesting that GAGs modulate the cell microenvironment after fatigue injury. GAG removal decreased dynamic modulus in the toe region and decreased loss tangent in the linear region of the stress-strain curve in fatigued tendons, suggesting the GAG increase modulates tendon multiscale mechanics and viscoelasticity during fiber uncrimping and fibril sliding and strain transfer. GAGs may influence repair in response to exercise and could serve as a therapeutic target for tendinopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高天雨发布了新的文献求助10
刚刚
Ecokarster发布了新的文献求助10
2秒前
2秒前
isvv发布了新的文献求助20
5秒前
Jasper应助义气的羽毛采纳,获得10
6秒前
KY完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
天天完成签到,获得积分10
7秒前
原野发布了新的文献求助10
7秒前
海人完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
小马甲应助qqqqqq采纳,获得10
10秒前
10秒前
11秒前
Rain完成签到,获得积分10
11秒前
科目三应助liuying采纳,获得10
11秒前
www268完成签到,获得积分10
11秒前
Ecokarster完成签到,获得积分10
14秒前
14秒前
16秒前
共享精神应助Guo采纳,获得10
16秒前
英俊的铭应助诚心黑夜采纳,获得10
16秒前
17秒前
17秒前
billevans发布了新的文献求助30
17秒前
18秒前
大个应助fengjingjing采纳,获得10
18秒前
科研通AI6.1应助DG采纳,获得10
20秒前
Criminology34举报ewbo求助涉嫌违规
20秒前
风趣烤鸡完成签到,获得积分10
20秒前
20秒前
隐形曼青应助xw采纳,获得10
21秒前
科研通AI6.1应助aoi采纳,获得10
22秒前
DJY发布了新的文献求助10
22秒前
花海完成签到,获得积分10
22秒前
kiminonawa应助科研通管家采纳,获得10
22秒前
机灵柚子应助忘言采纳,获得20
22秒前
赘婿应助lky0119采纳,获得10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323