Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons

肌腱 细胞外基质 肌腱病 微尺度化学 机械转化 糖胺聚糖 医学 解剖 细胞生物学 生物 心理学 数学教育
作者
Patrick M. Muljadi,Nelly Andarawis‐Puri
出处
期刊:Journal of Biomechanics [Elsevier BV]
卷期号:152: 111584-111584
标识
DOI:10.1016/j.jbiomech.2023.111584
摘要

Tendinopathies are common injuries that typically occur from overuse and fatigue. Treatments target late-stage symptoms with limited success, leading to high rates of reinjury. Early intervention could halt tendinopathy progression to rupture but requires a better understanding of the biomechanical environment associated with early-stage disease. While fatigue injured tendons are further damaged by exercise that is initiated immediately after onset of injury, exercise that is initiated after a brief delay promotes repair. Similar macroscale mechanical properties and collagen damage throughout this delay period suggests that microscale, non-collagenous matrix changes after fatigue injury modulate tendon mechanotransduction and shifts the exercise response from detrimental to reparative. Glycosaminoglycans (GAGs) and proteoglycans (PGs) are increased during chronic tendinopathy, but their role in early-stage disease is unknown. We hypothesized that increased GAGs from fatigue injury modulate viscoelasticity and microscale strains to enable repair from exercise. Various GAG types were increased in the weeks after onset of fatigue injury in the extracellular and pericellular matrices of rat patellar tendons. Enzymatic removal of GAGs from these fatigued tendons increased microscale shear strain, suggesting that GAGs modulate the cell microenvironment after fatigue injury. GAG removal decreased dynamic modulus in the toe region and decreased loss tangent in the linear region of the stress-strain curve in fatigued tendons, suggesting the GAG increase modulates tendon multiscale mechanics and viscoelasticity during fiber uncrimping and fibril sliding and strain transfer. GAGs may influence repair in response to exercise and could serve as a therapeutic target for tendinopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅辰完成签到 ,获得积分10
刚刚
liuzhen发布了新的文献求助10
2秒前
LUNWENREQUEST发布了新的文献求助10
5秒前
梁小氓完成签到 ,获得积分10
5秒前
毛豆爸爸应助义气青丝采纳,获得20
7秒前
卞旭东完成签到,获得积分10
9秒前
Tin完成签到,获得积分10
10秒前
汉堡包应助hhllhh采纳,获得10
11秒前
wxx完成签到,获得积分10
11秒前
握瑾怀瑜完成签到 ,获得积分0
11秒前
猪仔5号完成签到 ,获得积分10
11秒前
jeffrey完成签到,获得积分0
15秒前
smottom完成签到,获得积分0
16秒前
liuzhen完成签到,获得积分20
17秒前
芒果完成签到 ,获得积分10
17秒前
yoyo完成签到,获得积分10
18秒前
SHuEvan完成签到,获得积分10
19秒前
wintersss完成签到,获得积分10
20秒前
21秒前
Dellamoffy完成签到,获得积分10
22秒前
hhllhh完成签到,获得积分10
23秒前
ybheart完成签到,获得积分0
30秒前
huzi完成签到,获得积分10
32秒前
Lucky.完成签到 ,获得积分0
35秒前
ypres完成签到 ,获得积分10
35秒前
贝贝完成签到 ,获得积分10
36秒前
热可可728完成签到,获得积分10
36秒前
坚守初心发布了新的文献求助10
37秒前
梅特卡夫完成签到,获得积分10
37秒前
单身的幼菱完成签到 ,获得积分10
37秒前
学术laji完成签到 ,获得积分10
39秒前
脑洞疼应助hehe采纳,获得10
39秒前
雨纷纷完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
无尘完成签到 ,获得积分10
42秒前
坐看云起完成签到,获得积分10
43秒前
CodeCraft应助ceeray23采纳,获得20
46秒前
47秒前
hehe发布了新的文献求助10
52秒前
坚守初心完成签到,获得积分10
52秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008834
求助须知:如何正确求助?哪些是违规求助? 3548485
关于积分的说明 11298899
捐赠科研通 3283114
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220