亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助小飞采纳,获得10
刚刚
3秒前
搜集达人应助无风风采纳,获得10
6秒前
queen完成签到,获得积分10
7秒前
哪位发布了新的文献求助10
8秒前
在水一方完成签到 ,获得积分0
9秒前
桔梗完成签到 ,获得积分10
9秒前
10秒前
小黄是欧皇关注了科研通微信公众号
13秒前
自信的网络完成签到 ,获得积分10
14秒前
哪位完成签到,获得积分10
16秒前
噫吁嚱完成签到 ,获得积分10
16秒前
英姑应助天真的戾采纳,获得20
16秒前
所所应助小飞采纳,获得10
18秒前
小罗完成签到,获得积分20
19秒前
21秒前
22秒前
坚守完成签到 ,获得积分10
23秒前
26秒前
小鱼发布了新的文献求助10
26秒前
27秒前
科研通AI6应助世良采纳,获得10
28秒前
32秒前
万能图书馆应助小飞采纳,获得10
32秒前
灵巧凝莲发布了新的文献求助10
36秒前
张凡完成签到 ,获得积分10
38秒前
zjy完成签到,获得积分10
39秒前
nenoaowu发布了新的文献求助10
42秒前
李健应助刘生采纳,获得10
43秒前
传统的戎完成签到,获得积分10
45秒前
希望天下0贩的0应助小飞采纳,获得10
49秒前
科研通AI6应助ZHANG采纳,获得20
51秒前
51秒前
CipherSage应助nenoaowu采纳,获得10
54秒前
坚定的碧凡完成签到,获得积分10
58秒前
寒生完成签到,获得积分10
1分钟前
Fancy完成签到,获得积分10
1分钟前
开朗嘉熙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助FXe采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286