Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁一完成签到,获得积分20
刚刚
浮游应助Frank采纳,获得10
刚刚
深情安青应助柳橙采纳,获得20
刚刚
zhaowei发布了新的文献求助10
1秒前
1秒前
kamenashi完成签到,获得积分10
2秒前
单薄的煎蛋完成签到,获得积分10
2秒前
吒猫发布了新的文献求助10
2秒前
dis完成签到,获得积分10
3秒前
青山发布了新的文献求助10
3秒前
3秒前
11完成签到 ,获得积分10
3秒前
zhhhh发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
汉堡包应助亿眼万年采纳,获得10
6秒前
BleSSinG完成签到,获得积分10
6秒前
谦让的语柳完成签到 ,获得积分10
6秒前
zhaoxu发布了新的文献求助10
6秒前
奋斗的无色完成签到,获得积分20
7秒前
王堃历发布了新的文献求助10
8秒前
8秒前
9秒前
七彩光应助jiezhao采纳,获得10
9秒前
机械腾完成签到,获得积分10
9秒前
怡然咖啡豆完成签到,获得积分10
10秒前
天天快乐应助kamenashi采纳,获得10
10秒前
折纸发布了新的文献求助10
10秒前
小马甲应助周小丁采纳,获得10
11秒前
SHINING发布了新的文献求助10
11秒前
朔望发布了新的文献求助10
12秒前
changping完成签到,获得积分0
12秒前
安德鲁完成签到,获得积分10
13秒前
充电宝应助晚星采纳,获得10
13秒前
陈帅完成签到,获得积分10
13秒前
研友_Good Hope完成签到,获得积分10
13秒前
健忘的灵槐完成签到,获得积分10
14秒前
zhu_完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166574
求助须知:如何正确求助?哪些是违规求助? 4358543
关于积分的说明 13570767
捐赠科研通 4205109
什么是DOI,文献DOI怎么找? 2306149
邀请新用户注册赠送积分活动 1305922
关于科研通互助平台的介绍 1252367