已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助nicholas采纳,获得10
刚刚
HHH完成签到 ,获得积分10
刚刚
1秒前
imagine完成签到,获得积分10
1秒前
2秒前
安详的海风完成签到,获得积分10
4秒前
Ni发布了新的文献求助10
4秒前
张某某完成签到,获得积分10
4秒前
5秒前
6秒前
打打应助LJP采纳,获得10
6秒前
完美世界应助彬彬采纳,获得10
7秒前
科研通AI6应助悬铃木采纳,获得10
7秒前
9秒前
9秒前
10秒前
JM发布了新的文献求助10
10秒前
酷波er应助云澈采纳,获得10
11秒前
11秒前
爱lx完成签到,获得积分10
11秒前
RC发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
榴芒兔发布了新的文献求助10
15秒前
巫马尔槐发布了新的文献求助10
15秒前
英姑应助馒头爸爸采纳,获得10
16秒前
qq完成签到 ,获得积分10
16秒前
上官若男应助JM采纳,获得10
16秒前
好运来发布了新的文献求助10
17秒前
17秒前
ceeray23发布了新的文献求助20
18秒前
无花果应助jojo采纳,获得10
18秒前
CodeCraft应助激昂的如柏采纳,获得10
18秒前
sweetsbt发布了新的文献求助10
20秒前
云澈发布了新的文献求助10
22秒前
mtt驳回了思源应助
23秒前
Vv发布了新的文献求助10
23秒前
小富婆完成签到 ,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558