Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyao完成签到,获得积分20
刚刚
杨震发布了新的文献求助30
1秒前
Nuyoah完成签到,获得积分10
2秒前
Alan完成签到,获得积分10
3秒前
迷路寄云完成签到,获得积分10
3秒前
3秒前
4秒前
飘逸初夏完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
7秒前
当你完成签到,获得积分10
8秒前
ppg123应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
ppg123应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
ppg123应助科研通管家采纳,获得10
8秒前
ppg123应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
niewei应助科研通管家采纳,获得10
8秒前
ppg123应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
uuuu发布了新的文献求助10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
蝗虫发布了新的文献求助10
8秒前
8秒前
ppg123应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
niewei应助科研通管家采纳,获得10
9秒前
ppg123应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
小J应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
ppg123应助科研通管家采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345