Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ssyong完成签到 ,获得积分10
刚刚
刚刚
帅气的宽完成签到 ,获得积分10
1秒前
彭于晏应助zheng-homes采纳,获得10
1秒前
3秒前
柏林寒冬应助机灵铭采纳,获得10
4秒前
4秒前
细腻剑成完成签到 ,获得积分20
4秒前
Samuel98完成签到 ,获得积分10
6秒前
6秒前
6秒前
科研通AI6应助鲜艳的以寒采纳,获得10
7秒前
Yongander完成签到,获得积分20
7秒前
悦耳亦云完成签到 ,获得积分10
7秒前
冷静源智发布了新的文献求助50
7秒前
shiwei发布了新的文献求助10
9秒前
一口袋的风完成签到,获得积分10
9秒前
羽梨发布了新的文献求助10
9秒前
11秒前
12秒前
小杜完成签到,获得积分10
13秒前
13秒前
aDou完成签到 ,获得积分10
14秒前
16秒前
羽梨完成签到,获得积分10
16秒前
mumuaidafu完成签到 ,获得积分10
17秒前
17秒前
风中冰香应助cui采纳,获得10
18秒前
菩提本无树完成签到,获得积分10
18秒前
19秒前
22秒前
丘比特应助狂野的夏柳采纳,获得10
22秒前
23秒前
长情藏今完成签到,获得积分10
23秒前
Jupiter 1234发布了新的文献求助10
24秒前
25秒前
NexusExplorer应助哈哈2022采纳,获得10
25秒前
feitian201861完成签到,获得积分10
25秒前
Re完成签到,获得积分10
28秒前
29秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379826
求助须知:如何正确求助?哪些是违规求助? 4504037
关于积分的说明 14017191
捐赠科研通 4412828
什么是DOI,文献DOI怎么找? 2423948
邀请新用户注册赠送积分活动 1416842
关于科研通互助平台的介绍 1394454