Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arya123000完成签到,获得积分10
刚刚
SKSK发布了新的文献求助30
刚刚
123321完成签到 ,获得积分10
刚刚
二中所长发布了新的文献求助10
刚刚
稳赚赚完成签到,获得积分10
刚刚
无语的断缘完成签到,获得积分10
刚刚
森森完成签到,获得积分10
刚刚
Chelsea发布了新的文献求助10
刚刚
YY完成签到,获得积分10
1秒前
大方的凌波完成签到,获得积分10
1秒前
1秒前
汉堡包应助罗克采纳,获得10
1秒前
2秒前
研友_8QxayZ发布了新的文献求助10
2秒前
myli完成签到,获得积分10
2秒前
jie发布了新的文献求助10
2秒前
fsm完成签到,获得积分10
3秒前
3秒前
giggle完成签到,获得积分10
3秒前
misstwo完成签到,获得积分10
3秒前
Jasper应助清爽朋友采纳,获得10
3秒前
4秒前
Archer完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
嘘嘘完成签到,获得积分10
4秒前
Owen应助机智洋采纳,获得10
5秒前
5秒前
西瓜橙子完成签到,获得积分10
5秒前
开朗的踏歌完成签到,获得积分10
6秒前
踢踢踢踢踢死你完成签到,获得积分10
6秒前
清风完成签到,获得积分10
6秒前
lcj完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
剑K发布了新的文献求助10
8秒前
8秒前
smin发布了新的文献求助10
9秒前
恭喜完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516585
求助须知:如何正确求助?哪些是违规求助? 4609506
关于积分的说明 14516131
捐赠科研通 4546282
什么是DOI,文献DOI怎么找? 2491148
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444803