已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review

指纹(计算) 计算机科学 无线 指纹识别 软件部署 样品(材料) 可用性 全球定位系统 人工智能 数据挖掘 机器学习 实时计算 电信 人机交互 操作系统 化学 色谱法
作者
Liu Wen,Yingeng Zhang,Zhongliang Deng,Heyang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37535-37545 被引量:4
标识
DOI:10.1109/access.2023.3266874
摘要

The fingerprint positioning has achieved remarkable results in indoor localization tasks, but the method usually relies on a large amount of fingerprint data to build a fingerprint database, and the amount and diversity of fingerprint data will directly affect the effectiveness of fingerprint positioning. Since fingerprint acquisition is limited and disturbed by space and time, it consumes a lot of labor and time costs to collect fingerprint data in the localization environment, and wireless fingerprint data is time-sensitive and environment-dependent, and changes in the localization environment will reduce the usability of the existing fingerprint database. The complex and repetitive fingerprint acquisition work seriously affects the feasibility of practical deployment of fingerprint positioning systems in the positioning environment. Therefore, the study of low-cost wireless fingerprint database construction methods has become an inevitable part of promoting the widespread deployment of indoor fingerprint positioning systems. In this paper, we introduce the traditional data augmentation-based approach and the advanced machine learning model-based approach, systematically presenting the underlying models and algorithms of both. The former reviews the application of two traditional data enhancement methods, namely channel propagation models and interpolation or regression, to the construction of low-cost wireless fingerprint databases, while the latter taps into techniques for reducing the cost of fingerprint database construction by combining generative adversarial networks and small-sample learning models with the indoor localization domain. Finally, we discuss the current challenges and future research directions for achieving high-performance indoor localization based on low-cost wireless fingerprint databases, and suggest some useful research guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔柜子发布了新的文献求助100
2秒前
斜阳完成签到 ,获得积分10
3秒前
糊糊完成签到,获得积分10
4秒前
4秒前
5秒前
sciforce完成签到,获得积分10
5秒前
超级的板栗完成签到,获得积分10
7秒前
yy完成签到 ,获得积分20
7秒前
muhum完成签到 ,获得积分10
8秒前
kaka完成签到,获得积分0
8秒前
9秒前
于夜柳发布了新的文献求助10
9秒前
嘻嘻哈哈应助yjx采纳,获得10
10秒前
chenwuhao完成签到 ,获得积分10
10秒前
wangxiaobin完成签到 ,获得积分10
13秒前
jiafang完成签到,获得积分10
13秒前
CipherSage应助糊糊采纳,获得30
13秒前
14秒前
uikymh完成签到 ,获得积分0
15秒前
榕小蜂完成签到 ,获得积分10
16秒前
冷酷飞飞完成签到 ,获得积分10
16秒前
jyy完成签到,获得积分10
17秒前
咩咩完成签到 ,获得积分10
17秒前
小爬沟完成签到,获得积分10
18秒前
18秒前
19秒前
Setlla完成签到 ,获得积分10
20秒前
小蘑菇应助犹豫的雁卉采纳,获得10
20秒前
肖的花园完成签到 ,获得积分10
21秒前
22秒前
23秒前
谢大喵发布了新的文献求助10
23秒前
今后应助幸运幸福采纳,获得10
24秒前
动听衬衫发布了新的文献求助10
25秒前
Nefelibata完成签到,获得积分10
26秒前
wangyue完成签到 ,获得积分10
27秒前
Angenstern完成签到 ,获得积分10
27秒前
tong童完成签到 ,获得积分10
29秒前
Fiona发布了新的文献求助10
29秒前
科研通AI5应助动听衬衫采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581