Developing efficient oxygen evolution reaction (OER) electrocatalysts is of great importance for sustainable energy conversion and storage. Ni-based catalysts have shown great potential as OER electrocatalysts, but their performance still needs to be improved. Herein, we report the multiple metal doped nickel nanoparticles synthesized via a simple oil phase strategy as efficient OER catalysts. The FeMnMoV–Ni exhibits superior OER performance with an overpotential of 220 mV at 10 mA cm−2 and a long-term stability of 250 h in 1 M KOH solution. In situ Raman analysis shows that the NiOOH site works as the active center and multiple metallic dopants facilitate the formation of NiOOH. Mo and V dopants promote the formation of high-valence state of Ni sites, and Mn dopants increase the electrochemical active surface area and expose more active sites. This work provides a novel strategy for catalyst design, which is critical for developing multiple metal doped catalysts.