Determination of workers' compliance to safety regulations using a spatio-temporal graph convolution network

安全监测 顺从(心理学) 自动化 计算机科学 图形 工程类 风险分析(工程) 业务 心理学 机械工程 社会心理学 生物技术 理论计算机科学 生物
作者
Bogyeong Lee,Sungkook Hong,Hyunsoo Kim
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 101942-101942 被引量:5
标识
DOI:10.1016/j.aei.2023.101942
摘要

The safety of workers in construction remains a critical issue despite the automation of several tasks with fewer workers on site. As fatal accidents of workers account for a significant number of construction accidents, considerable effort has been made to monitor workers’ safety behaviors with additional personnel for supervising workers. With the advancement of data analytics, recent research has reported various human activity recognition methods based on image data to perform automated worker monitoring without additional labor. Nevertheless, unlike existing approaches based on a single image, a method that can capture a series of actions from sequential images is required to monitor workers’ compliance with safety behavior. To this end, an approach based on OpenPose and a spatio-temporal graph convolutional network is proposed in this study to evaluate workers’ compliance with safety regulations using sequential videos. The two primary functions of the developed method include 1) classifying each safety behavior among five representative behaviors stipulated in construction, and 2) determining the compliance of workers with each safety regulation. The results indicate that the developed approach can capture momentary safety behaviors and workers’ compliance with feasible accuracy of an average F1 score greater than 0.8. Furthermore, the proposed method can be extended to safety intervention policies with behavior-based feedback to inform workers of their non-compliance with safety behaviors. Therefore, this study contributes to proactive safety management by focusing on workers’ behavioral levels rather than on accident rate-based management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
starlx0813发布了新的文献求助50
刚刚
1秒前
LL发布了新的文献求助10
2秒前
第三人称的自己完成签到,获得积分10
3秒前
3秒前
善良紫完成签到,获得积分10
3秒前
4秒前
慕青应助xuleitao采纳,获得10
7秒前
7秒前
luohao完成签到,获得积分10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
乐意应助科研通管家采纳,获得10
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
jevon应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
fifteen应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
jevon应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
fifteen应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
starlx0813完成签到,获得积分10
11秒前
lvyan完成签到,获得积分10
11秒前
忧虑的蜜蜂关注了科研通微信公众号
14秒前
潘先森发布了新的文献求助10
14秒前
北海未暖发布了新的文献求助10
17秒前
纯真皮卡丘完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
852应助潘先森采纳,获得10
20秒前
975289990完成签到,获得积分10
20秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3210163
求助须知:如何正确求助?哪些是违规求助? 2859556
关于积分的说明 8119816
捐赠科研通 2525082
什么是DOI,文献DOI怎么找? 1358790
科研通“疑难数据库(出版商)”最低求助积分说明 642875
邀请新用户注册赠送积分活动 614694