Determination of workers' compliance to safety regulations using a spatio-temporal graph convolution network

安全监测 顺从(心理学) 自动化 计算机科学 图形 工程类 风险分析(工程) 业务 心理学 机械工程 社会心理学 生物技术 理论计算机科学 生物
作者
Bogyeong Lee,Sungkook Hong,Hyunsoo Kim
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:56: 101942-101942 被引量:26
标识
DOI:10.1016/j.aei.2023.101942
摘要

The safety of workers in construction remains a critical issue despite the automation of several tasks with fewer workers on site. As fatal accidents of workers account for a significant number of construction accidents, considerable effort has been made to monitor workers’ safety behaviors with additional personnel for supervising workers. With the advancement of data analytics, recent research has reported various human activity recognition methods based on image data to perform automated worker monitoring without additional labor. Nevertheless, unlike existing approaches based on a single image, a method that can capture a series of actions from sequential images is required to monitor workers’ compliance with safety behavior. To this end, an approach based on OpenPose and a spatio-temporal graph convolutional network is proposed in this study to evaluate workers’ compliance with safety regulations using sequential videos. The two primary functions of the developed method include 1) classifying each safety behavior among five representative behaviors stipulated in construction, and 2) determining the compliance of workers with each safety regulation. The results indicate that the developed approach can capture momentary safety behaviors and workers’ compliance with feasible accuracy of an average F1 score greater than 0.8. Furthermore, the proposed method can be extended to safety intervention policies with behavior-based feedback to inform workers of their non-compliance with safety behaviors. Therefore, this study contributes to proactive safety management by focusing on workers’ behavioral levels rather than on accident rate-based management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助高大的万恶采纳,获得10
1秒前
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
4秒前
祖乐松完成签到,获得积分10
4秒前
青青儿发布了新的文献求助10
4秒前
taiyan完成签到,获得积分10
5秒前
李健的粉丝团团长应助TNU采纳,获得10
5秒前
海风吹过小镇完成签到 ,获得积分10
5秒前
十津川哈哈哈完成签到,获得积分10
5秒前
wanci应助神外魔法师采纳,获得30
6秒前
苍蓝所栖发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
感动又晴发布了新的文献求助10
8秒前
安详晓亦发布了新的文献求助10
8秒前
司徒绮发布了新的文献求助10
8秒前
8秒前
YK完成签到,获得积分10
9秒前
Gauss应助科研通管家采纳,获得20
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
Xinxxx应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Xinxxx应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
大快朵颐发福完成签到,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
只争朝夕应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265