Determination of workers' compliance to safety regulations using a spatio-temporal graph convolution network

安全监测 顺从(心理学) 自动化 计算机科学 图形 工程类 风险分析(工程) 业务 心理学 机械工程 社会心理学 生物技术 理论计算机科学 生物
作者
Bogyeong Lee,Sungkook Hong,Hyunsoo Kim
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:56: 101942-101942 被引量:26
标识
DOI:10.1016/j.aei.2023.101942
摘要

The safety of workers in construction remains a critical issue despite the automation of several tasks with fewer workers on site. As fatal accidents of workers account for a significant number of construction accidents, considerable effort has been made to monitor workers’ safety behaviors with additional personnel for supervising workers. With the advancement of data analytics, recent research has reported various human activity recognition methods based on image data to perform automated worker monitoring without additional labor. Nevertheless, unlike existing approaches based on a single image, a method that can capture a series of actions from sequential images is required to monitor workers’ compliance with safety behavior. To this end, an approach based on OpenPose and a spatio-temporal graph convolutional network is proposed in this study to evaluate workers’ compliance with safety regulations using sequential videos. The two primary functions of the developed method include 1) classifying each safety behavior among five representative behaviors stipulated in construction, and 2) determining the compliance of workers with each safety regulation. The results indicate that the developed approach can capture momentary safety behaviors and workers’ compliance with feasible accuracy of an average F1 score greater than 0.8. Furthermore, the proposed method can be extended to safety intervention policies with behavior-based feedback to inform workers of their non-compliance with safety behaviors. Therefore, this study contributes to proactive safety management by focusing on workers’ behavioral levels rather than on accident rate-based management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
1秒前
1秒前
wp发布了新的文献求助10
1秒前
5秒前
hyhyhyhy发布了新的文献求助10
5秒前
LL完成签到,获得积分10
9秒前
JamesPei应助hyhyhyhy采纳,获得10
10秒前
10秒前
tang完成签到,获得积分10
11秒前
11秒前
如意厉完成签到,获得积分10
12秒前
1029zx完成签到,获得积分10
13秒前
xiaoming777完成签到,获得积分10
13秒前
Leo完成签到 ,获得积分10
15秒前
snai1发布了新的文献求助10
15秒前
慕青应助碧蓝的幻悲采纳,获得30
18秒前
HgPP完成签到 ,获得积分10
19秒前
Ankher完成签到,获得积分10
19秒前
田様应助猪头采纳,获得10
21秒前
董H完成签到,获得积分10
21秒前
wp完成签到,获得积分10
21秒前
22秒前
潇洒的灵萱完成签到,获得积分10
22秒前
SciGPT应助清酒采纳,获得10
23秒前
Manzia完成签到,获得积分10
23秒前
24秒前
听风轻语完成签到,获得积分10
25秒前
小刘发布了新的文献求助10
26秒前
CipherSage应助乌拉挂机采纳,获得10
27秒前
27秒前
李敏之发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
归尘发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
猪头发布了新的文献求助10
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088