Robust Preference-Guided Denoising for Graph based Social Recommendation

计算机科学 图形 人工智能 冗余(工程) 降噪 推荐系统 机器学习 偏爱 数据挖掘 理论计算机科学 数学 统计 操作系统
作者
Quan, Yuhan,Ding, Jingtao,Gao, Chen,Yi, Lingling,Jin, Depeng,Li, Yong
出处
期刊:Cornell University - arXiv
标识
DOI:10.1145/3543507.3583374
摘要

Graph Neural Network(GNN) based social recommendation models improve the prediction accuracy of user preference by leveraging GNN in exploiting preference similarity contained in social relations. However, in terms of both effectiveness and efficiency of recommendation, a large portion of social relations can be redundant or even noisy, e.g., it is quite normal that friends share no preference in a certain domain. Existing models do not fully solve this problem of relation redundancy and noise, as they directly characterize social influence over the full social network. In this paper, we instead propose to improve graph based social recommendation by only retaining the informative social relations to ensure an efficient and effective influence diffusion, i.e., graph denoising. Our designed denoising method is preference-guided to model social relation confidence and benefits user preference learning in return by providing a denoised but more informative social graph for recommendation models. Moreover, to avoid interference of noisy social relations, it designs a self-correcting curriculum learning module and an adaptive denoising strategy, both favoring highly-confident samples. Experimental results on three public datasets demonstrate its consistent capability of improving two state-of-the-art social recommendation models by robustly removing 10-40% of original relations. We release the source code at https://github.com/tsinghua-fib-lab/Graph-Denoising-SocialRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
revo完成签到,获得积分10
刚刚
1秒前
miles完成签到,获得积分10
1秒前
堪祥完成签到,获得积分10
1秒前
青禾发布了新的文献求助10
2秒前
萌兰完成签到,获得积分10
3秒前
3秒前
小猪猪完成签到,获得积分10
4秒前
Sherry完成签到,获得积分10
6秒前
LZY完成签到,获得积分10
7秒前
7秒前
浮流少年完成签到,获得积分10
8秒前
六六发布了新的文献求助10
9秒前
驴橘子窈完成签到,获得积分10
9秒前
zgping完成签到,获得积分10
11秒前
手握10篇sci关注了科研通微信公众号
12秒前
13秒前
NN完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
16秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
Lucas应助六六采纳,获得10
18秒前
19秒前
20秒前
20秒前
21秒前
晓军发布了新的文献求助10
22秒前
zhaomr完成签到,获得积分10
22秒前
22秒前
morry5007发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743367
求助须知:如何正确求助?哪些是违规求助? 3285916
关于积分的说明 10048700
捐赠科研通 3002607
什么是DOI,文献DOI怎么找? 1648241
邀请新用户注册赠送积分活动 784589
科研通“疑难数据库(出版商)”最低求助积分说明 750764