Effects of Cathode GDL Gradient Porosity Distribution along the Flow Channel Direction on Gas–Liquid Transport and Performance of PEMFC

质子交换膜燃料电池 多孔性 材料科学 阴极 毛细管作用 氧气输送 电流密度 膜电极组件 气体扩散 复合材料 压力梯度 扩散 化学 分析化学(期刊) 机械 电极 色谱法 热力学 电解质 氧气 生物化学 物理 有机化学 物理化学 量子力学
作者
Ruijie Zhu,Zhigang Zhan,Heng Zhang,Qingguo Du,Xiaosong Chen,Xin Xiang,Xiaofei Wen,Mu Pan
出处
期刊:Polymers [MDPI AG]
卷期号:15 (7): 1629-1629 被引量:11
标识
DOI:10.3390/polym15071629
摘要

The gas diffusion layer (GDL) is an important component of proton exchange membrane fuel cells (PEMFCs), and its porosity distribution has considerable effects on the transport properties and durability of PEMFCs. A 3-D two-phase flow computation fluid dynamics model was developed in this study, to numerically investigate the effects of three different porosity distributions in a cathode GDL: gradient-increasing (Case 1), gradient-decreasing (Case 3), and uniform constant (Case 2), on the gas-liquid transport and performance of PEMFCs; the novelty lies in the porosity gradient being along the channel direction, and the physical properties of the GDL related to porosity were modified accordingly. The results showed that at a high current density (2400 mA·cm-2), the GDL of Case 1 had a gas velocity of up to 0.5 cm·s-1 along the channel direction. The liquid water in the membrane electrode assembly could be easily removed because of the larger gas velocity and capillary pressure, resulting in a higher oxygen concentration in the GDL and the catalyst layer. Therefore, the cell performance increased. The voltage in Case 1 increased by 8% and 71% compared to Cases 2 and 3, respectively. In addition, this could ameliorate the distribution uniformity of the dissolved water and the current density in the membrane along the channel direction, which was beneficial for the durability of the PEMFC. The distribution of the GDL porosity at lower current densities had a less significant effect on the cell performance. The findings of this study may provide significant guidance for the design and optimization of the GDL in PEMFCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxy808关注了科研通微信公众号
刚刚
佚小满完成签到,获得积分10
刚刚
c123完成签到 ,获得积分10
1秒前
1秒前
berry发布了新的文献求助10
1秒前
超11发布了新的文献求助10
1秒前
2秒前
2秒前
隐形曼青应助烩面大师采纳,获得10
2秒前
2秒前
默然的歌完成签到 ,获得积分10
2秒前
CTL发布了新的文献求助10
3秒前
3秒前
3秒前
大鹏完成签到,获得积分10
3秒前
3秒前
3秒前
congguitar发布了新的文献求助10
4秒前
CodeCraft应助韭黄采纳,获得10
4秒前
4秒前
小月发布了新的文献求助10
4秒前
香蕉觅云应助学渣向下采纳,获得10
5秒前
5秒前
YML完成签到,获得积分10
6秒前
荣安安完成签到,获得积分10
6秒前
啦某某完成签到,获得积分10
6秒前
sunzhiyu233发布了新的文献求助10
7秒前
zhenzhen发布了新的文献求助10
7秒前
fang发布了新的文献求助10
7秒前
chengyulin完成签到 ,获得积分10
7秒前
孙二二发布了新的文献求助10
7秒前
小二郎应助SY采纳,获得10
8秒前
Akim应助顺心的惜蕊采纳,获得10
9秒前
9秒前
berry完成签到,获得积分20
10秒前
康小郁完成签到,获得积分10
10秒前
快乐友灵完成签到,获得积分10
10秒前
11秒前
群木成林完成签到,获得积分10
11秒前
小白一号完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759