A Deep Learning and Morphological Method for Concrete Cracks Detection

导线 变压器 计算机科学 深度学习 人工智能 钢筋混凝土 结构工程 工程类 地质学 电气工程 大地测量学 电压
作者
Qilin Jin,Qingbang Han,Nana Su,Yang Wu,Yufeng Han
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:32 (16) 被引量:8
标识
DOI:10.1142/s0218126623502717
摘要

Concrete crack detection is essential for infrastructure safety, and its detection efficiency and accuracy are the key issues. An improved YOLOV5 and three measurement algorithms are proposed in this paper, where the original prediction heads are replaced by Transformer Heads (TH) to expose the prediction potential with one self-attention model. Experiments show that the improved YOLOV5 effectively enhances the detection and classification of concrete cracks, and the Mean Average Precision (MAP) value of all classes increases to 99.5%. The first method is more accurate for small cracks, whilst the average width obtained based on the axial traverse correction method is more exact for large cracks. The crack width obtained from the concrete picture sample is the same as that obtained from the manual detection, with a deviation rate of 0–5.5%. This research demonstrates the recognition and classification of concrete cracks by integrating deep learning and machine vision with high precision and high efficiency. It is helpful for the real-time measurement and analysis of concrete cracks with potential safety hazards in bridges, high-rise buildings, etc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助情殇采纳,获得10
1秒前
踏实的怜菡完成签到 ,获得积分10
2秒前
完美世界应助顾茗采纳,获得10
2秒前
3秒前
3秒前
小狮遛狗队完成签到,获得积分10
3秒前
不懈奋进应助fatcat采纳,获得30
3秒前
1391451653完成签到,获得积分10
4秒前
程泓瑜发布了新的文献求助10
4秒前
JamesPei应助外向板栗采纳,获得10
4秒前
小蘑菇应助diedeline采纳,获得30
5秒前
7秒前
8秒前
9秒前
婷婷发布了新的文献求助10
9秒前
程程程发布了新的文献求助10
9秒前
郭惠智完成签到,获得积分10
12秒前
Niu发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
wanci应助聪慧的惊蛰采纳,获得10
14秒前
15秒前
慕青应助雷雷采纳,获得10
15秒前
khlkkfc完成签到,获得积分10
17秒前
Tiger完成签到,获得积分10
17秒前
18秒前
19秒前
Yeung完成签到 ,获得积分10
19秒前
19秒前
孤独依白完成签到,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775072
求助须知:如何正确求助?哪些是违规求助? 3320756
关于积分的说明 10201916
捐赠科研通 3035668
什么是DOI,文献DOI怎么找? 1665574
邀请新用户注册赠送积分活动 797023
科研通“疑难数据库(出版商)”最低求助积分说明 757689