CMOS芯片
电容式微机械超声换能器
材料科学
电容感应
超声波传感器
电压
光电子学
传感器
电气工程
前端和后端
电子工程
计算机科学
声学
工程类
物理
操作系统
作者
Yihe Zhao,Gian Luca Barbruni,Zhikang Li,Libo Zhao,Xiaozhang Wang,Kaifei Wang,Zhuangde Jiang,Sandro Carrara
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-03-23
卷期号:70 (5): 1799-1803
被引量:2
标识
DOI:10.1109/tcsii.2023.3261061
摘要
Label-free biosensors, combined with miniaturized micro-electromechanical sensory platforms, offer an attractive solution for real-time and facile monitoring of biomolecules due to their high sensitivity and selectivity without the need for specifically labeling. Resonators have been acknowledged as an efficient technology for measuring biomolecular binding events including those involving nucleic acid and antibody. Among these, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a promising candidate for biosensing. However, their usage is often limited by the requirement for high voltage supply and continuous frequency tracking, which can result in significant parasitic effects and measurement errors. In this brief, we present a novel front-end interface circuit for a CMUTs-based biosensor. The circuit, fabricated using TSMC 0.18- $\mu \text{m}$ Bipolar-CMOS-DMOS (BCD) technology, incorporates an on-chip high voltage charge pump and feedback frequency monitoring. The CMUTs array features $20\times20$ circular cells, fabricated using a low-temperature direct bonding technology, with an experimental parallel-resonant frequency of 1.724 MHz and a high quality factor of up to 40.9. To fit the measured electrical characteristics, a five-element equivalent lumped element model is proposed. The high voltage charge pump provides an output voltage of ~20 V, while the feedback oscillator has a ms-level start-up time and a total power dissipation of 3.8 mW. The proposed front-end interface is designed to function as a stand-alone chip for CMUTs-based resonant biodetection.
科研通智能强力驱动
Strongly Powered by AbleSci AI