Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning

可解释性 计算机科学 人工智能 嵌入 图形 卷积神经网络 理论计算机科学 机器学习 深度学习 规范化(社会学) 算法 社会学 人类学
作者
Zhihao Wu,Xincan Lin,Zhenghong Lin,Zhaoliang Chen,Yang Bai,Shiping Wang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8593-8606 被引量:30
标识
DOI:10.1109/tmm.2023.3260649
摘要

As real-world data become increasingly heterogeneous, multi-view semi-supervised learning has garnered widespread attention. Although existing studies have made efforts towards this and achieved decent performance, they are restricted to shallow models and how to mine deeper information from multiple views remains to be investigated. As a recently emerged neural network, Graph Convolutional Network (GCN) exploits graph structure to propagate label signals and has achieved encouraging performance, and it has been widely employed in various fields. Nonetheless, research on solving multi-view learning problems via GCN is limited and lacks interpretability. To address this gap, in this paper we propose a framework termed Interpretable Multi-view Graph Convolutional Network (IMvGCN 1 Code is available at https://github.com/ZhihaoWu99/IMvGCN. ). We first combine the reconstruction error and Laplacian embedding to formulate a multi-view learning problem that explores the original space from feature and topology perspectives. In light of a series of derivations, we establish a potential connection between GCN and multi-view learning, which holds significance for both domains. Furthermore, we propose an orthogonal normalization method to guarantee the mathematical connection, which solves the intractable problem of orthogonal constraints in deep learning. In addition, the proposed framework is applied to the multi-view semi-supervised learning task. Comprehensive experiments demonstrate the superiority of our proposed method over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wei发布了新的文献求助10
刚刚
宁少爷应助孤独的醉易采纳,获得30
刚刚
小C完成签到,获得积分10
1秒前
好困芽完成签到,获得积分10
1秒前
2秒前
2秒前
Joker发布了新的文献求助10
3秒前
3秒前
沧海横流发布了新的文献求助10
4秒前
薰硝壤应助stop here采纳,获得50
5秒前
5秒前
111发布了新的文献求助30
5秒前
大佛老爷发布了新的文献求助10
5秒前
acuter发布了新的文献求助10
5秒前
明理的幻悲完成签到,获得积分10
5秒前
5秒前
6秒前
科研小虫应助ww采纳,获得10
8秒前
李爱国应助Tigher采纳,获得30
9秒前
hhhs发布了新的文献求助10
9秒前
li完成签到 ,获得积分10
9秒前
可靠的书桃应助小小采纳,获得10
9秒前
sjbxzpf发布了新的文献求助10
10秒前
快乐蜗牛发布了新的文献求助10
11秒前
大佛老爷完成签到,获得积分20
11秒前
筱灬发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
wei完成签到,获得积分10
14秒前
14秒前
小其完成签到,获得积分10
14秒前
15秒前
筱溪完成签到 ,获得积分10
15秒前
15秒前
void科学家完成签到,获得积分10
16秒前
李李李发布了新的文献求助10
17秒前
烟花应助酷炫的乐枫采纳,获得10
17秒前
头文字H完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847