As real-world data become increasingly heterogeneous, multi-view semi-supervised learning has garnered widespread attention. Although existing studies have made efforts towards this and achieved decent performance, they are restricted to shallow models and how to mine deeper information from multiple views remains to be investigated. As a recently emerged neural network, Graph Convolutional Network (GCN) exploits graph structure to propagate label signals and has achieved encouraging performance, and it has been widely employed in various fields. Nonetheless, research on solving multi-view learning problems via GCN is limited and lacks interpretability. To address this gap, in this paper we propose a framework termed Interpretable Multi-view Graph Convolutional Network (IMvGCN 1 Code is available at https://github.com/ZhihaoWu99/IMvGCN. ). We first combine the reconstruction error and Laplacian embedding to formulate a multi-view learning problem that explores the original space from feature and topology perspectives. In light of a series of derivations, we establish a potential connection between GCN and multi-view learning, which holds significance for both domains. Furthermore, we propose an orthogonal normalization method to guarantee the mathematical connection, which solves the intractable problem of orthogonal constraints in deep learning. In addition, the proposed framework is applied to the multi-view semi-supervised learning task. Comprehensive experiments demonstrate the superiority of our proposed method over other state-of-the-art methods.