An Effective Model for Predicting Phage-Host Interactions Via Graph Embedding Representation Learning With Multi-Head Attention Mechanism

寄主(生物学) 计算机科学 人工智能 计算生物学 嵌入 机器学习 生物 遗传学
作者
Yue Wang,Han Sun,Haodong Wang,Dandan Li,Weizhong Zhao,Xingpeng Jiang,Xianjun Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3061-3071 被引量:3
标识
DOI:10.1109/jbhi.2023.3261319
摘要

In the treatment of bacterial infectious diseases, overuse of antibiotics may lead to not only bacterial resistance to antibiotics but also dysbiosis of beneficial bacteria which are essential for maintaining normal human life activities. Instead, phage therapy, which invades and lyses specific pathogenic bacteria without affecting beneficial bacteria, becomes more and more popular to treat bacterial infectious diseases. For the effective phage therapy, it requires to accurately predict potential phage-host interactions from heterogeneous information network consisting of bacteria and phages. Although many models have been proposed for predicting phage-host interactions, most methods fail to consider fully the sparsity and unconnectedness of phage-host heterogeneous information network, deriving the undesirable performance on phage-host interactions prediction. To address the challenge, we propose an effective model called GERMAN-PHI for predicting Phage-Host Interactions via Graph Embedding Representation learning with Multi-head Attention mechaNism. In GERMAN-PHI, the multi-head attention mechanism is utilized to learn representations of phages and hosts from multiple perspectives of phage-host associations, addressing the sparsity and unconnectedness in phage-host heterogeneous information network. More specifically, a module of GAT with talking-heads is employed to learn representations of phages and bacteria, on which neural induction matrix completion is conducted to reconstruct the phage-host association matrix. Results of comprehensive experiments demonstrate that GERMAN-PHI performs better than the state-of-the-art methods on phage-host interactions prediction. In addition, results of case study for two high-risk human pathogens show that GERMAN-PHI can predict validated phages with high accuracy, and some potential or new associated phages are provided as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助哈哈哈采纳,获得10
刚刚
刚刚
1秒前
参上发布了新的文献求助10
1秒前
无辜的忘幽完成签到,获得积分10
2秒前
姚晓华发布了新的文献求助10
2秒前
3秒前
4秒前
停停停发布了新的文献求助10
4秒前
深情安青应助淡定的乐安采纳,获得10
5秒前
小二郎应助大帅采纳,获得10
6秒前
吴未完成签到,获得积分10
6秒前
6秒前
advance发布了新的文献求助10
8秒前
ringwave1988发布了新的文献求助30
8秒前
9秒前
9秒前
Impurity完成签到,获得积分10
9秒前
Orange应助潇洒的若烟采纳,获得10
9秒前
10秒前
10秒前
华仔应助落后项链采纳,获得10
11秒前
MING完成签到,获得积分20
11秒前
13秒前
wangwangwang完成签到,获得积分10
13秒前
wyt发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
14秒前
阿七完成签到,获得积分10
14秒前
欣慰纸鹤发布了新的文献求助10
15秒前
大帅发布了新的文献求助10
17秒前
慢慢人完成签到,获得积分10
18秒前
外向的如冰完成签到,获得积分10
20秒前
无花果应助ZhangL采纳,获得10
20秒前
23秒前
23秒前
娜娜liuna完成签到,获得积分10
23秒前
huihui完成签到,获得积分10
23秒前
张zhang完成签到,获得积分10
24秒前
orixero应助wyt采纳,获得10
24秒前
科研通AI6应助huk采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869