亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Effective Model for Predicting Phage-Host Interactions Via Graph Embedding Representation Learning With Multi-Head Attention Mechanism

寄主(生物学) 计算机科学 人工智能 计算生物学 嵌入 机器学习 生物 遗传学
作者
Yue Wang,Han Sun,Haodong Wang,Dandan Li,Weizhong Zhao,Xingpeng Jiang,Xianjun Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3061-3071 被引量:3
标识
DOI:10.1109/jbhi.2023.3261319
摘要

In the treatment of bacterial infectious diseases, overuse of antibiotics may lead to not only bacterial resistance to antibiotics but also dysbiosis of beneficial bacteria which are essential for maintaining normal human life activities. Instead, phage therapy, which invades and lyses specific pathogenic bacteria without affecting beneficial bacteria, becomes more and more popular to treat bacterial infectious diseases. For the effective phage therapy, it requires to accurately predict potential phage-host interactions from heterogeneous information network consisting of bacteria and phages. Although many models have been proposed for predicting phage-host interactions, most methods fail to consider fully the sparsity and unconnectedness of phage-host heterogeneous information network, deriving the undesirable performance on phage-host interactions prediction. To address the challenge, we propose an effective model called GERMAN-PHI for predicting Phage-Host Interactions via Graph Embedding Representation learning with Multi-head Attention mechaNism. In GERMAN-PHI, the multi-head attention mechanism is utilized to learn representations of phages and hosts from multiple perspectives of phage-host associations, addressing the sparsity and unconnectedness in phage-host heterogeneous information network. More specifically, a module of GAT with talking-heads is employed to learn representations of phages and bacteria, on which neural induction matrix completion is conducted to reconstruct the phage-host association matrix. Results of comprehensive experiments demonstrate that GERMAN-PHI performs better than the state-of-the-art methods on phage-host interactions prediction. In addition, results of case study for two high-risk human pathogens show that GERMAN-PHI can predict validated phages with high accuracy, and some potential or new associated phages are provided as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77关闭了77文献求助
2秒前
慕青应助lily采纳,获得10
2秒前
哈哈哈哈哈完成签到,获得积分20
4秒前
英俊的铭应助耳东陈采纳,获得10
6秒前
Abdurrahman完成签到,获得积分10
6秒前
娜娜发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
耳东陈发布了新的文献求助10
17秒前
shaonianzu完成签到 ,获得积分10
19秒前
20秒前
25秒前
zzz33完成签到 ,获得积分10
26秒前
T1aNer299发布了新的文献求助10
26秒前
28秒前
DonglinHe发布了新的文献求助10
39秒前
五原日落完成签到,获得积分10
40秒前
桐桐应助xiaoxili采纳,获得10
42秒前
小米椒完成签到 ,获得积分10
44秒前
祁言完成签到 ,获得积分10
44秒前
刘良烽发布了新的文献求助10
45秒前
星辰大海应助sivan采纳,获得10
47秒前
烟花应助6666666666采纳,获得10
47秒前
hahahan完成签到 ,获得积分10
51秒前
Benhnhk21完成签到,获得积分10
53秒前
53秒前
哇呀呀完成签到 ,获得积分0
53秒前
57秒前
57秒前
等待葵阴完成签到,获得积分10
59秒前
AURORA应助五原日落采纳,获得10
59秒前
xiaoxili发布了新的文献求助10
59秒前
无亞发布了新的文献求助30
1分钟前
绫小路完成签到,获得积分10
1分钟前
1分钟前
等待葵阴发布了新的文献求助10
1分钟前
歡禧发布了新的文献求助10
1分钟前
6666666666发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345566
求助须知:如何正确求助?哪些是违规求助? 4480481
关于积分的说明 13946398
捐赠科研通 4378012
什么是DOI,文献DOI怎么找? 2405541
邀请新用户注册赠送积分活动 1398137
关于科研通互助平台的介绍 1370544