An Effective Model for Predicting Phage-Host Interactions Via Graph Embedding Representation Learning With Multi-Head Attention Mechanism

寄主(生物学) 计算机科学 人工智能 计算生物学 嵌入 机器学习 生物 遗传学
作者
Yue Wang,Han Sun,Haodong Wang,Dandan Li,Weizhong Zhao,Xingpeng Jiang,Xianjun Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3061-3071 被引量:3
标识
DOI:10.1109/jbhi.2023.3261319
摘要

In the treatment of bacterial infectious diseases, overuse of antibiotics may lead to not only bacterial resistance to antibiotics but also dysbiosis of beneficial bacteria which are essential for maintaining normal human life activities. Instead, phage therapy, which invades and lyses specific pathogenic bacteria without affecting beneficial bacteria, becomes more and more popular to treat bacterial infectious diseases. For the effective phage therapy, it requires to accurately predict potential phage-host interactions from heterogeneous information network consisting of bacteria and phages. Although many models have been proposed for predicting phage-host interactions, most methods fail to consider fully the sparsity and unconnectedness of phage-host heterogeneous information network, deriving the undesirable performance on phage-host interactions prediction. To address the challenge, we propose an effective model called GERMAN-PHI for predicting Phage-Host Interactions via Graph Embedding Representation learning with Multi-head Attention mechaNism. In GERMAN-PHI, the multi-head attention mechanism is utilized to learn representations of phages and hosts from multiple perspectives of phage-host associations, addressing the sparsity and unconnectedness in phage-host heterogeneous information network. More specifically, a module of GAT with talking-heads is employed to learn representations of phages and bacteria, on which neural induction matrix completion is conducted to reconstruct the phage-host association matrix. Results of comprehensive experiments demonstrate that GERMAN-PHI performs better than the state-of-the-art methods on phage-host interactions prediction. In addition, results of case study for two high-risk human pathogens show that GERMAN-PHI can predict validated phages with high accuracy, and some potential or new associated phages are provided as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊子应助xx采纳,获得30
1秒前
2秒前
3秒前
坦率的依风完成签到 ,获得积分10
3秒前
8秒前
米夏完成签到 ,获得积分10
8秒前
意忆完成签到,获得积分10
8秒前
烬屋藏娇完成签到,获得积分10
9秒前
优秀的寄容完成签到,获得积分20
12秒前
追寻的山晴应助孙卫平采纳,获得10
14秒前
bkagyin应助精明曲奇采纳,获得10
15秒前
wanci应助害羞的盼海采纳,获得10
15秒前
19秒前
21秒前
22秒前
23秒前
25秒前
27秒前
共享精神应助Remote采纳,获得10
29秒前
29秒前
Ava应助chen采纳,获得10
30秒前
momo发布了新的文献求助10
30秒前
31秒前
俏皮妙芹完成签到 ,获得积分10
33秒前
556677y发布了新的文献求助10
33秒前
害羞的盼海完成签到,获得积分10
34秒前
36秒前
37秒前
李健的粉丝团团长应助lz采纳,获得10
38秒前
39秒前
Nayuta48完成签到,获得积分10
43秒前
chen发布了新的文献求助10
43秒前
妖孽的二狗完成签到 ,获得积分10
44秒前
wyq发布了新的文献求助10
47秒前
53秒前
54秒前
小白兔完成签到,获得积分10
57秒前
57秒前
干雅柏发布了新的文献求助10
58秒前
uki发布了新的文献求助10
59秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267632
求助须知:如何正确求助?哪些是违规求助? 2907088
关于积分的说明 8340578
捐赠科研通 2577809
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633974