An Effective Model for Predicting Phage-Host Interactions Via Graph Embedding Representation Learning With Multi-Head Attention Mechanism

寄主(生物学) 计算机科学 人工智能 计算生物学 嵌入 机器学习 生物 遗传学
作者
Yue Wang,Han Sun,Haodong Wang,Dandan Li,Weizhong Zhao,Xingpeng Jiang,Xianjun Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3061-3071 被引量:3
标识
DOI:10.1109/jbhi.2023.3261319
摘要

In the treatment of bacterial infectious diseases, overuse of antibiotics may lead to not only bacterial resistance to antibiotics but also dysbiosis of beneficial bacteria which are essential for maintaining normal human life activities. Instead, phage therapy, which invades and lyses specific pathogenic bacteria without affecting beneficial bacteria, becomes more and more popular to treat bacterial infectious diseases. For the effective phage therapy, it requires to accurately predict potential phage-host interactions from heterogeneous information network consisting of bacteria and phages. Although many models have been proposed for predicting phage-host interactions, most methods fail to consider fully the sparsity and unconnectedness of phage-host heterogeneous information network, deriving the undesirable performance on phage-host interactions prediction. To address the challenge, we propose an effective model called GERMAN-PHI for predicting Phage-Host Interactions via Graph Embedding Representation learning with Multi-head Attention mechaNism. In GERMAN-PHI, the multi-head attention mechanism is utilized to learn representations of phages and hosts from multiple perspectives of phage-host associations, addressing the sparsity and unconnectedness in phage-host heterogeneous information network. More specifically, a module of GAT with talking-heads is employed to learn representations of phages and bacteria, on which neural induction matrix completion is conducted to reconstruct the phage-host association matrix. Results of comprehensive experiments demonstrate that GERMAN-PHI performs better than the state-of-the-art methods on phage-host interactions prediction. In addition, results of case study for two high-risk human pathogens show that GERMAN-PHI can predict validated phages with high accuracy, and some potential or new associated phages are provided as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小艾发布了新的文献求助50
3秒前
所所应助善良的沛山采纳,获得10
4秒前
4秒前
甜甜的盼海完成签到,获得积分10
4秒前
Ding-Ding完成签到,获得积分10
5秒前
奋斗的宛亦完成签到,获得积分20
6秒前
6秒前
念梦发布了新的文献求助10
6秒前
yoyo发布了新的文献求助10
7秒前
FashionBoy应助mint-WANG采纳,获得10
7秒前
MaskRuin完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
刘丹发布了新的文献求助10
11秒前
苒苒发布了新的文献求助30
15秒前
bao完成签到 ,获得积分10
15秒前
K先生发布了新的文献求助10
15秒前
16秒前
刘宇童完成签到,获得积分10
17秒前
18秒前
ChatGPT发布了新的文献求助50
18秒前
可爱的麻烦不嫌多完成签到,获得积分10
20秒前
21秒前
风清扬发布了新的文献求助10
21秒前
爱sun完成签到 ,获得积分10
21秒前
汉堡包应助apckkk采纳,获得10
22秒前
23秒前
24秒前
fdwang完成签到 ,获得积分10
24秒前
25秒前
下雨天就该睡大觉完成签到,获得积分10
25秒前
大模型应助wxxx采纳,获得10
27秒前
妮可发布了新的文献求助10
28秒前
隐形曼青应助Tia采纳,获得20
31秒前
33秒前
zhengyuci发布了新的文献求助30
33秒前
妮可完成签到,获得积分10
35秒前
pluto应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194677
求助须知:如何正确求助?哪些是违规求助? 4376939
关于积分的说明 13630885
捐赠科研通 4232153
什么是DOI,文献DOI怎么找? 2321393
邀请新用户注册赠送积分活动 1319546
关于科研通互助平台的介绍 1269917