An Effective Model for Predicting Phage-Host Interactions Via Graph Embedding Representation Learning With Multi-Head Attention Mechanism

寄主(生物学) 计算机科学 人工智能 计算生物学 嵌入 机器学习 生物 遗传学
作者
Yue Wang,Han Sun,Haodong Wang,Dandan Li,Weizhong Zhao,Xingpeng Jiang,Xianjun Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 3061-3071 被引量:3
标识
DOI:10.1109/jbhi.2023.3261319
摘要

In the treatment of bacterial infectious diseases, overuse of antibiotics may lead to not only bacterial resistance to antibiotics but also dysbiosis of beneficial bacteria which are essential for maintaining normal human life activities. Instead, phage therapy, which invades and lyses specific pathogenic bacteria without affecting beneficial bacteria, becomes more and more popular to treat bacterial infectious diseases. For the effective phage therapy, it requires to accurately predict potential phage-host interactions from heterogeneous information network consisting of bacteria and phages. Although many models have been proposed for predicting phage-host interactions, most methods fail to consider fully the sparsity and unconnectedness of phage-host heterogeneous information network, deriving the undesirable performance on phage-host interactions prediction. To address the challenge, we propose an effective model called GERMAN-PHI for predicting Phage-Host Interactions via Graph Embedding Representation learning with Multi-head Attention mechaNism. In GERMAN-PHI, the multi-head attention mechanism is utilized to learn representations of phages and hosts from multiple perspectives of phage-host associations, addressing the sparsity and unconnectedness in phage-host heterogeneous information network. More specifically, a module of GAT with talking-heads is employed to learn representations of phages and bacteria, on which neural induction matrix completion is conducted to reconstruct the phage-host association matrix. Results of comprehensive experiments demonstrate that GERMAN-PHI performs better than the state-of-the-art methods on phage-host interactions prediction. In addition, results of case study for two high-risk human pathogens show that GERMAN-PHI can predict validated phages with high accuracy, and some potential or new associated phages are provided as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
勤奋的芒果完成签到,获得积分10
1秒前
volition完成签到,获得积分10
2秒前
嫣儿完成签到,获得积分10
2秒前
跳跃的航空完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
Hello应助sci喷涌而出采纳,获得10
2秒前
偷猪剑客发布了新的文献求助10
2秒前
薛然兮完成签到,获得积分10
2秒前
Gilana完成签到,获得积分10
3秒前
Free驳回了所所应助
3秒前
3秒前
小树枝发布了新的文献求助10
3秒前
3秒前
3秒前
王磊发布了新的文献求助10
3秒前
4秒前
4秒前
高挑的幻翠完成签到,获得积分10
4秒前
涟涵发布了新的文献求助10
4秒前
自觉的傥完成签到,获得积分10
5秒前
CMJ完成签到 ,获得积分10
5秒前
tinyfavor完成签到,获得积分10
5秒前
orixero应助小瓶子采纳,获得10
5秒前
平淡的鸿煊完成签到 ,获得积分10
6秒前
6秒前
7秒前
爱因斯宣发布了新的文献求助10
7秒前
大鱼完成签到,获得积分10
7秒前
研友_VZG7GZ应助开放芮采纳,获得10
8秒前
芷莜完成签到,获得积分10
8秒前
更明发布了新的文献求助10
9秒前
YurunDu完成签到,获得积分10
9秒前
充电宝应助qsxy采纳,获得10
9秒前
10秒前
雪白的紫翠完成签到 ,获得积分10
10秒前
小远发布了新的文献求助10
10秒前
充电宝应助大鸭梨采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118