材料科学
催化作用
硫黄
吸附
电化学
氧化还原
密度泛函理论
化学工程
X射线光电子能谱
空位缺陷
Atom(片上系统)
纳米技术
电极
物理化学
结晶学
计算化学
化学
有机化学
工程类
冶金
计算机科学
嵌入式系统
作者
Hongfei Gu,Wence Yue,Jingqi Hu,Xiangfu Niu,Hao Tang,Fengjuan Qin,You Li,Qing Yan,Wei Ma,Wenjing Xu,Zhiyi Sun,Qingqing Liu,Wensheng Yan,Lirong Zheng,Yu Wang,Hua Wang,Xinyuan Li,Liang Zhang,Guang-Ming Xia,Wenxing Chen
标识
DOI:10.1002/aenm.202204014
摘要
Abstract Lithium–sulfur (Li–S) batteries are receiving great attention owing to their large theoretical energy density, but the shuttle effect and sluggish kinetic conversion of lithium polysulfides (LiPSs) seriously restrict their practical applications. Herein, various metal single‐atom catalysts immobilized on nitrogen‐doped Ti 3 C 2 T x ( M SA/N‐Ti 3 C 2 T x , M = Cu, Co, Ni, Mn, Zn, In, Sn, Pb, and Bi) are successfully prepared by a neoteric vacancy‐assisted strategy, applied as polypropylene (PP) separator coatings to facilitate the fast redox conversion and adsorption of LiPSs for boosting Li–S batteries. Of particular note, among the M SA/N‐Ti 3 C 2 T x s, Cu SA/N‐Ti 3 C 2 T x /PP exhibits amazing properties, involving excellent rate performance (925 mAh g −1 at 3 C), superb cycling stability over 1000 cycles, and ultra‐high sulfur utilization even at large sulfur loadings (7.19 mg cm −2 ; an areal capacity of 5.28 mAh cm −2 ). X‐ray absorption fine spectroscopy and density functional theory calculations reveal that the asymmetrically coordinated Cu–N 1 C 2 moieties act as the active sites, which possess a higher binding energy and a larger electron cloud with LiPSs than pristine Ti 3 C 2 T x , facilitating the adsorption and kinetic conversion of LiPSs effectively. This work may provide new insights into single atom‐decorated ultrathin 2D materials for enhancing electrochemical performance of advanced batteries for energy storage and conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI