A Comparison of Methods for Investigating the Quantitative Relationships Between Empoasca onukii Matsuda (Hemiptera: Cicadellidae) and its Natural Enemies

相似性(几何) 相关系数 灰色关联分析 统计 数学 排名(信息检索) 余弦相似度 亲密度 计算机科学 人工智能 图像(数学) 数学分析 聚类分析
作者
Shiyan Chen,Junjie Cai,Honghao Cheng,Yunding ZOU
标识
DOI:10.51963/jers.v25i1.2304
摘要

To systematically study the quantitative relationship between natural enemies and pests, this paper used grey relational analysis method, angular cosine coefficient method, fuzzy similarity priority ratio method and correlation coefficient method to analyze the closeness of the quantitative relationship between natural enemies and Empoasca onukii Matsuda in “Anjibaicha”, “Huangshandayezhong” and “Longjing 43” tea plantations. The conclusions obtained by the grey relational analysis method were used as a criterion to compare the sum of the rankings of the top three natural enemies, Plexippus paykulli, Tetragnatha squamata and Ebrechtella tricuspidata, thus comparing and discussing the similarities and differences between the conclusions obtained by the four research methods. The angular cosine coefficient method and grey relational analysis method yielded no major differences in conclusions, followed by the correlation coefficient method, with the fuzzy similarity priority ratio method yielding more varied results. According to the ranking analysis of the close relationship between the number of E. onukii and its natural enemies, Tetragnatha squamata, Hylyphantes graminicola and Ebrechtella tricuspidata are the first three natural enemies closely related to the number of E. onukii. This paper is an attempt to compare the consistency of research results of various research methods, which provides a reference for selecting research methods in analyzing the quantitative relationship between natural enemies and pests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助SQ采纳,获得10
1秒前
Tullips完成签到 ,获得积分10
1秒前
tjzbw发布了新的文献求助10
1秒前
小屁发布了新的文献求助10
2秒前
科研通AI6.1应助Gyr060307采纳,获得10
2秒前
华仔应助南桃采纳,获得10
2秒前
碧蓝麦片完成签到,获得积分10
2秒前
英姑应助狂野的雨灵采纳,获得10
3秒前
3秒前
贲从蓉发布了新的文献求助10
4秒前
4秒前
传奇3应助草莓布丁采纳,获得10
5秒前
量子星尘发布了新的文献求助30
6秒前
6秒前
勤恳曼卉发布了新的文献求助10
6秒前
7秒前
shjyang完成签到,获得积分0
7秒前
直率苡完成签到,获得积分10
7秒前
小丫发布了新的文献求助10
7秒前
liberty发布了新的文献求助10
8秒前
8秒前
tangcan完成签到,获得积分20
9秒前
852应助宋song采纳,获得10
9秒前
清新的代芹完成签到,获得积分10
9秒前
lingling发布了新的文献求助10
9秒前
如意芷蕾发布了新的文献求助10
9秒前
刘某发布了新的文献求助10
10秒前
Criminology34应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
zh应助科研通管家采纳,获得10
11秒前
zh应助科研通管家采纳,获得10
11秒前
zh应助科研通管家采纳,获得10
11秒前
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201