A Comparison of Methods for Investigating the Quantitative Relationships Between Empoasca onukii Matsuda (Hemiptera: Cicadellidae) and its Natural Enemies

相似性(几何) 相关系数 灰色关联分析 统计 数学 排名(信息检索) 余弦相似度 亲密度 计算机科学 人工智能 图像(数学) 数学分析 聚类分析
作者
Shiyan Chen,Junjie Cai,Honghao Cheng,Yunding ZOU
标识
DOI:10.51963/jers.v25i1.2304
摘要

To systematically study the quantitative relationship between natural enemies and pests, this paper used grey relational analysis method, angular cosine coefficient method, fuzzy similarity priority ratio method and correlation coefficient method to analyze the closeness of the quantitative relationship between natural enemies and Empoasca onukii Matsuda in “Anjibaicha”, “Huangshandayezhong” and “Longjing 43” tea plantations. The conclusions obtained by the grey relational analysis method were used as a criterion to compare the sum of the rankings of the top three natural enemies, Plexippus paykulli, Tetragnatha squamata and Ebrechtella tricuspidata, thus comparing and discussing the similarities and differences between the conclusions obtained by the four research methods. The angular cosine coefficient method and grey relational analysis method yielded no major differences in conclusions, followed by the correlation coefficient method, with the fuzzy similarity priority ratio method yielding more varied results. According to the ranking analysis of the close relationship between the number of E. onukii and its natural enemies, Tetragnatha squamata, Hylyphantes graminicola and Ebrechtella tricuspidata are the first three natural enemies closely related to the number of E. onukii. This paper is an attempt to compare the consistency of research results of various research methods, which provides a reference for selecting research methods in analyzing the quantitative relationship between natural enemies and pests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助蓝瑞采纳,获得10
1秒前
1秒前
gulu发布了新的文献求助10
2秒前
可知发布了新的文献求助10
2秒前
szong完成签到,获得积分10
2秒前
小二郎应助11采纳,获得10
2秒前
2秒前
Jin发布了新的文献求助10
3秒前
华仔应助CJY采纳,获得10
3秒前
吧嗒完成签到,获得积分10
4秒前
所所应助苏锦霖采纳,获得10
4秒前
尼仲星发布了新的文献求助30
4秒前
酷炫绿草发布了新的文献求助10
4秒前
研友_8WzxMZ发布了新的文献求助10
5秒前
5秒前
lx33101128完成签到,获得积分10
5秒前
5秒前
5秒前
充电宝应助wu030采纳,获得30
6秒前
7秒前
8秒前
wanci应助昏睡的长颈鹿采纳,获得10
9秒前
ding应助乌鸦坐飞机采纳,获得10
9秒前
9秒前
西洲发布了新的文献求助10
10秒前
10秒前
飘零的歌手完成签到,获得积分10
10秒前
令狐发布了新的文献求助10
10秒前
jinling发布了新的文献求助30
11秒前
11秒前
12秒前
yyy发布了新的文献求助10
12秒前
诗木完成签到,获得积分20
12秒前
12秒前
1101592875发布了新的文献求助30
13秒前
13秒前
酷炫绿草完成签到,获得积分10
13秒前
13秒前
JamesPei应助冯大哥采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721182
求助须知:如何正确求助?哪些是违规求助? 5264527
关于积分的说明 15293440
捐赠科研通 4870438
什么是DOI,文献DOI怎么找? 2615484
邀请新用户注册赠送积分活动 1565349
关于科研通互助平台的介绍 1522340