Identification of key signaling pathways and hub genes related to immune infiltration in Kawasaki disease with resistance to intravenous immunoglobulin based on weighted gene co-expression network analysis

免疫系统 小桶 基因 生物 抗体 计算生物学 基因表达谱 免疫学 基因表达 遗传学 转录组
作者
Yue Wang,Yingying Cao,Li Yang,Mei Yuan,Jing Xu,Zhen Yang
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:10 被引量:1
标识
DOI:10.3389/fmolb.2023.1182512
摘要

Background: Kawasaki disease (KD) is an acute vasculitis, that is, the leading cause of acquired heart disease in children, with approximately 10%-20% of patients with KD suffering intravenous immunoglobulin (IVIG) resistance. Although the underlying mechanism of this phenomenon remains unclear, recent studies have revealed that immune cell infiltration may associate with its occurrence. Methods: In this study, we downloaded the expression profiles from the GSE48498 and GSE16797 datasets in the Gene Expression Omnibus database, analyzed differentially expressed genes (DEGs), and intersected the DEGs with the immune-related genes downloaded from the ImmPort database to obtain differentially expressed immune-related genes (DEIGs). Then CIBERSORT algorithm was used to calculate the immune cell compositions, followed by the WGCNA analysis to identify the module genes associated with immune cell infiltration. Next, we took the intersection of the selected module genes and DEIGs, then performed GO and KEGG enrichment analysis. Moreover, ROC curve validation, Spearman analysis with immune cells, TF, and miRNA regulation network, and potential drug prediction were implemented for the finally obtained hub genes. Results: The CIBERSORT algorithm showed that neutrophil expression was significantly higher in IVIG-resistant patients compared to IVIG-responsive patients. Next, we got differentially expressed neutrophil-related genes by intersecting DEIGs with neutrophil-related module genes obtained by WGCNA, for further analysis. Enrichment analysis revealed that these genes were associated with immune pathways, such as cytokine-cytokine receptor interaction and neutrophil extracellular trap formation. Then we combined the PPI network in the STRING database with the MCODE plugin in Cytoscape and identified 6 hub genes (TLR8, AQP9, CXCR1, FPR2, HCK, and IL1R2), which had good diagnostic performance in IVIG resistance according to ROC analysis. Furthermore, Spearman's correlation analysis confirmed that these genes were closely related to neutrophils. Finally, TFs, miRNAs, and potential drugs targeting the hub genes were predicted, and TF-, miRNA-, and drug-gene networks were constructed. Conclusion: This study found that the 6 hub genes (TLR8, AQP9, CXCR1, FPR2, HCK, and IL1R2) were significantly associated with neutrophil cell infiltration, which played an important role in IVIG resistance. In a word, this work rendered potential diagnostic biomarkers and prospective therapeutic targets for IVIG-resistant patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力的宁发布了新的文献求助10
1秒前
DD完成签到,获得积分10
1秒前
1秒前
1秒前
手动阀完成签到,获得积分10
1秒前
1秒前
乐乐是一只大黄面包完成签到,获得积分10
1秒前
清欢发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
嘚嘚完成签到,获得积分10
3秒前
丘比特应助啦啦啦123采纳,获得10
3秒前
CipherSage应助飞飏采纳,获得10
4秒前
4秒前
4秒前
桐桐应助萝卜不困采纳,获得10
4秒前
4秒前
4秒前
5秒前
HarryYang发布了新的文献求助200
5秒前
DIngqin完成签到,获得积分10
6秒前
iKYy完成签到,获得积分20
6秒前
6秒前
FashionBoy应助酷炫的冰蓝采纳,获得10
6秒前
ohh发布了新的文献求助10
7秒前
7秒前
qin发布了新的文献求助10
7秒前
TTZ完成签到 ,获得积分10
8秒前
槿萱完成签到,获得积分10
8秒前
9秒前
乐乐应助dw采纳,获得10
10秒前
凌中豆发布了新的文献求助50
10秒前
CodeCraft应助达达利亚采纳,获得10
10秒前
云栈出谷发布了新的文献求助10
10秒前
10秒前
wly完成签到,获得积分10
11秒前
若尘发布了新的文献求助10
11秒前
11秒前
12秒前
李审绥完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503