Optimal Midcourse Guidance for Dual-Pulse Rocket Using Pseudospectral Sequential Convex Programming

空空导弹 火箭(武器) 航空航天工程 航空航天 航空学 物理 运筹学 计算机科学 工程类 导弹
作者
Boseok Kim,Chang-Hun Lee
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:46 (7): 1425-1436 被引量:1
标识
DOI:10.2514/1.g006882
摘要

No AccessEngineering NotesOptimal Midcourse Guidance for Dual-Pulse Rocket Using Pseudospectral Sequential Convex ProgrammingBoseok Kim and Chang-Hun LeeBoseok Kim https://orcid.org/0000-0001-8897-2418Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Chang-Hun Lee https://orcid.org/0000-0002-0758-1974Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of KoreaPublished Online:26 May 2023https://doi.org/10.2514/1.G006882SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations About References [1] Cheng V. H. L. and Gupta N. K., "Advanced Midcourse Guidance for Air-to-Air Missiles," Journal of Guidance, Control, and Dynamics, Vol. 9, No. 2, 1986, pp. 135–142. https://doi.org/10.2514/3.20081 LinkGoogle Scholar[2] Sridhar B. and Gupta N. K., "Missile Guidance Laws Based on Singular Perturbation Methodology," Journal of Guidance and Control, Vol. 3, No. 2, 1980, pp. 158–165. https://doi.org/10.2514/3.55964 LinkGoogle Scholar[3] Menon P. K. A. and Briggs M. M., "Near-Optimal Midcourse Guidance for Air-to-Air Missiles," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 4, 1990, pp. 596–602. https://doi.org/10.2514/3.25375 LinkGoogle Scholar[4] Manickavasagam M., Sarkar A. K. and Vaithiyanathan V., "A Singular Perturbation Based Midcourse Guidance Law for Realistic Air-to-air Engagement," Defence Science Journal, Vol. 67, No. 1, 2017, pp. 108–118. https://doi.org/10.14429/dsj.1.9236 Google Scholar[5] Imado F., Kuroda T. and Miwa S., "Optimal Midcourse Guidance for Medium-Range Air-to-Air Missiles," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 4, 1990, pp. 603–608. https://doi.org/10.2514/3.25376 LinkGoogle Scholar[6] Kumar R. R., Seywald H. and Cliff E. M., "Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target," Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 457–464. https://doi.org/10.2514/3.21409 LinkGoogle Scholar[7] Cheng V. H. L., Menon P. K. A., Gupta N. K. and Briggs M. M., "Reduced-Order Pulse-Motor Ignition Control Logic," Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 343–350. https://doi.org/10.2514/3.20224 LinkGoogle Scholar[8] Annam C., Ratnoo A. and Ghose D., "Singular-Perturbation-Based Guidance of Pulse Motor Interceptors with Look Angle Constraints," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 7, 2021, pp. 1356–1370. https://doi.org/10.2514/1.G005508 LinkGoogle Scholar[9] Calise A. J. and Nagy J., "Necessary Conditions for Optimal Pulse Control," Journal of Guidance, Control, and Dynamics, Vol. 9, No. 1, 1986, pp. 53–57. https://doi.org/10.2514/3.20066 LinkGoogle Scholar[10] Calise A. J. and Prasad J. V. R., "Pulse Motor Control for Maximizing Average Velocity," Journal of Guidance, Control, and Dynamics, Vol. 12, No. 2, 1989, pp. 169–174. https://doi.org/10.2514/3.20387 LinkGoogle Scholar[11] Imado F., Kuroda T. and Miwa S., "Optimal Thrust Control of a Missile with a Pulse Motor," Journal of Guidance, Control, and Dynamics, Vol. 14, No. 2, 1991, pp. 377–382. https://doi.org/10.2514/3.20649 LinkGoogle Scholar[12] Lu P., "Introducing Computational Guidance and Control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 193–193. https://doi.org/10.2514/1.G002745 LinkGoogle Scholar[13] Liu X., Shen Z. and Lu P., "Entry Trajectory Optimization by Second-Order Cone Programming," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 2, 2016, pp. 227–241. https://doi.org/10.2514/1.G001210 LinkGoogle Scholar[14] Wang Z. and Grant M. J., "Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2603–2615. https://doi.org/10.2514/1.G002150 LinkGoogle Scholar[15] Szmuk M., Eren U. and Acikmese B., "Successive Convexification for Mars 6-DoF Powered Descent Landing Guidance," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2017-1500, 2017. https://doi.org/10.2514/6.2017-1500 LinkGoogle Scholar[16] Liu X., Shen Z. and Lu P., "Exact Convex Relaxation for Optimal Flight of Aerodynamically Controlled Missiles," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 4, 2016, pp. 1881–1892. https://doi.org/10.1109/TAES.2016.150741 CrossrefGoogle Scholar[17] Benedikter B., Zavoli A., Colasurdo G., Pizzurro S. and Cavallini E., "Convex Approach to Three-Dimensional Launch Vehicle Ascent Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 6, 2021, pp. 1116–1131. https://doi.org/10.2514/1.G005376 LinkGoogle Scholar[18] Liu X., "Fuel-Optimal Rocket Landing with Aerodynamic Controls," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 65–77. https://doi.org/10.2514/1.G003537 LinkGoogle Scholar[19] Sagliano M., Heidecker A., Macés Hernández J., Farì S., Schlotterer M., Woicke S., Seelbinder D. and Dumont E., "Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing," AIAA Scitech 2021 Forum, AIAA Paper 2021-0862, 2021. https://doi.org/10.2514/6.2021-0862 LinkGoogle Scholar[20] Wang J., Zhang R. and Li H., "Onboard Optimization of Multi-Arc Trajectories with Constraints on Duration of Arcs," Acta Astronautica, Vol. 192, March 2022, pp. 434–442. https://doi.org/10.1016/j.actaastro.2021.12.023 CrossrefGoogle Scholar[21] Wang Z. and Lu Y., "Improved Sequential Convex Programming Algorithms for Entry Trajectory Optimization," Journal of Spacecraft and Rockets, Vol. 57, No. 6, 2020, pp. 1373–1386. https://doi.org/10.2514/1.A34640 LinkGoogle Scholar[22] Wang J. and Cui N., "A Pseudospectral-Convex Optimization Algorithm for Rocket Landing Guidance," 2018 AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1871, 2018. https://doi.org/10.2514/6.2018-1871 LinkGoogle Scholar[23] Liu X., Shen Z. and Lu P., "Solving the Maximum-Crossrange Problem via Successive Second-Order Cone Programming with a Line Search," Aerospace Science and Technology, Vol. 47, Dec. 2015, pp. 10–20. https://doi.org/10.1016/j.ast.2015.09.008 CrossrefGoogle Scholar[24] Sagliano M., "Pseudospectral Convex Optimization for Powered Descent and Landing," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018, pp. 320–334. https://doi.org/10.2514/1.G002818 LinkGoogle Scholar[25] Sagliano M. and Mooij E., "Optimal Drag-Energy Entry Guidance via Pseudospectral Convex Optimization," Aerospace Science and Technology, Vol. 117, Oct. 2021, Paper 106946. https://doi.org/10.1016/j.ast.2021.106946 CrossrefGoogle Scholar[26] Sagliano M., "Generalized hp Pseudospectral-Convex Programming for Powered Descent and Landing," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 7, 2019, pp. 1562–1570. https://doi.org/10.2514/1.G003731 LinkGoogle Scholar[27] Lei X., Hongbo Z., Xiang Z. and Guojian T., "Hp-Adaptive Pseudospectral Convex Optimization for Rocket Powered Landing Trajectory Planning," 2019 Chinese Automation Congress (CAC), IEEE, New York, 2019, pp. 895–900. https://doi.org/10.1109/cac48633.2019.8996784 Google Scholar[28] Zhou X., He R.-Z., Zhang H.-B., Tang G.-J. and Bao W.-M., "Sequential Convex Programming Method Using Adaptive Mesh Refinement for Entry Trajectory Planning Problem," Aerospace Science and Technology, Vol. 109, Feb. 2021, Paper 106374. https://doi.org/10.1016/j.ast.2020.106374 Google Scholar[29] Pei P. and Wang J., "Near-Optimal Guidance with Impact Angle and Velocity Constraints Using Sequential Convex Programming," Mathematical Problems in Engineering, Vol. 2019, Oct. 2019, pp. 1–14. https://doi.org/10.1155/2019/2065730 CrossrefGoogle Scholar[30] Garg D., Patterson M., Hager W. W., Rao A. V., Benson D. A. and Huntington G. T., "A Unified Framework for the Numerical Solution of Optimal Control Problems Using Pseudospectral Methods," Automatica, Vol. 46, No. 11, 2010, pp. 1843–1851. https://doi.org/10.1016/j.automatica.2010.06.048 CrossrefGoogle Scholar[31] Kim B., Lee C.-H., Tahk M.-J. and He S., "A New Biased Proportional Navigation Guidance for Decelerating Targets," Advances in Guidance, Navigation and Control, Springer, Singapore, 2022, pp. 2489–2500. https://doi.org/10.1007/978-981-15-8155-7_209 Google Scholar[32] Nocedal J. and Yuan Y.-X., "Combining Trust Region and Line Search Techniques," Advances in Nonlinear Programming, Springer, Boston, MA, 1998, pp. 153–175. https://doi.org/10.1007/978-1-4613-3335-7_7 Google Scholar[33] "MOSEK Optimization Toolbox for MATLAB," User's Guide and Reference Manual, Ver. 4, MOSEK ApS, 2019. Google Scholar[34] Patterson M. A. and Rao A. V., "GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming," ACM Transactions on Mathematical Software (TOMS), Vol. 41, No. 1, 2014, pp. 1–37. https://doi.org/10.1145/2558904 CrossrefGoogle Scholar[35] Dueri D., Açıkmeşe B., Scharf D. P. and Harris M. W., "Customized Real-Time Interior-Point Methods for Onboard Powered-Descent Guidance," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 197–212. https://doi.org/10.2514/1.G001480 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. KeywordsOptimal Midcourse GuidanceDual-pulse RocketConvex ProgrammingComputational GuidanceLong Range Air-to-Air MissileAcknowledgmentsThis work was supported by Theater Defense Research Center funded by Defense Acquisition Program Administration under Grant UD200043CD.PDF Received7 April 2022Accepted16 April 2023Published online26 May 2023

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
曹中明完成签到,获得积分10
4秒前
pajfew应助受伤紫菜采纳,获得20
5秒前
kdjm688发布了新的文献求助10
5秒前
5秒前
山木发布了新的文献求助10
6秒前
111完成签到,获得积分10
7秒前
7秒前
8秒前
别有乾坤完成签到,获得积分10
8秒前
10秒前
zcf发布了新的文献求助10
10秒前
11秒前
微笑的桐完成签到 ,获得积分10
11秒前
12秒前
小二郎应助suda采纳,获得10
12秒前
开心发布了新的文献求助10
13秒前
山木完成签到,获得积分20
13秒前
科研通AI6应助lv采纳,获得10
13秒前
桐桐应助天真的枕头采纳,获得10
13秒前
12591发布了新的文献求助10
13秒前
13秒前
13秒前
yyy完成签到 ,获得积分10
14秒前
地啦啦啦发布了新的文献求助10
14秒前
清图完成签到,获得积分10
14秒前
SciGPT应助清脆苑博采纳,获得10
14秒前
菠菜应助AnnieSsy采纳,获得150
14秒前
科研通AI2S应助谦让的落雁采纳,获得10
15秒前
15秒前
伊人不羁发布了新的文献求助10
16秒前
Zhe完成签到,获得积分10
16秒前
Hello应助甜蜜帽子采纳,获得10
17秒前
小瑄发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
冰洁儿完成签到,获得积分10
18秒前
bkagyin应助zhengyalan采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578007
求助须知:如何正确求助?哪些是违规求助? 4663017
关于积分的说明 14744201
捐赠科研通 4603681
什么是DOI,文献DOI怎么找? 2526640
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465642