Optimal Midcourse Guidance for Dual-Pulse Rocket Using Pseudospectral Sequential Convex Programming

空空导弹 火箭(武器) 航空航天工程 航空航天 航空学 物理 运筹学 计算机科学 工程类 导弹
作者
Boseok Kim,Chang-Hun Lee
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:46 (7): 1425-1436 被引量:1
标识
DOI:10.2514/1.g006882
摘要

No AccessEngineering NotesOptimal Midcourse Guidance for Dual-Pulse Rocket Using Pseudospectral Sequential Convex ProgrammingBoseok Kim and Chang-Hun LeeBoseok Kim https://orcid.org/0000-0001-8897-2418Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea and Chang-Hun Lee https://orcid.org/0000-0002-0758-1974Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of KoreaPublished Online:26 May 2023https://doi.org/10.2514/1.G006882SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations About References [1] Cheng V. H. L. and Gupta N. K., "Advanced Midcourse Guidance for Air-to-Air Missiles," Journal of Guidance, Control, and Dynamics, Vol. 9, No. 2, 1986, pp. 135–142. https://doi.org/10.2514/3.20081 LinkGoogle Scholar[2] Sridhar B. and Gupta N. K., "Missile Guidance Laws Based on Singular Perturbation Methodology," Journal of Guidance and Control, Vol. 3, No. 2, 1980, pp. 158–165. https://doi.org/10.2514/3.55964 LinkGoogle Scholar[3] Menon P. K. A. and Briggs M. M., "Near-Optimal Midcourse Guidance for Air-to-Air Missiles," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 4, 1990, pp. 596–602. https://doi.org/10.2514/3.25375 LinkGoogle Scholar[4] Manickavasagam M., Sarkar A. K. and Vaithiyanathan V., "A Singular Perturbation Based Midcourse Guidance Law for Realistic Air-to-air Engagement," Defence Science Journal, Vol. 67, No. 1, 2017, pp. 108–118. https://doi.org/10.14429/dsj.1.9236 Google Scholar[5] Imado F., Kuroda T. and Miwa S., "Optimal Midcourse Guidance for Medium-Range Air-to-Air Missiles," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 4, 1990, pp. 603–608. https://doi.org/10.2514/3.25376 LinkGoogle Scholar[6] Kumar R. R., Seywald H. and Cliff E. M., "Near-Optimal Three-Dimensional Air-to-Air Missile Guidance Against Maneuvering Target," Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, 1995, pp. 457–464. https://doi.org/10.2514/3.21409 LinkGoogle Scholar[7] Cheng V. H. L., Menon P. K. A., Gupta N. K. and Briggs M. M., "Reduced-Order Pulse-Motor Ignition Control Logic," Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 343–350. https://doi.org/10.2514/3.20224 LinkGoogle Scholar[8] Annam C., Ratnoo A. and Ghose D., "Singular-Perturbation-Based Guidance of Pulse Motor Interceptors with Look Angle Constraints," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 7, 2021, pp. 1356–1370. https://doi.org/10.2514/1.G005508 LinkGoogle Scholar[9] Calise A. J. and Nagy J., "Necessary Conditions for Optimal Pulse Control," Journal of Guidance, Control, and Dynamics, Vol. 9, No. 1, 1986, pp. 53–57. https://doi.org/10.2514/3.20066 LinkGoogle Scholar[10] Calise A. J. and Prasad J. V. R., "Pulse Motor Control for Maximizing Average Velocity," Journal of Guidance, Control, and Dynamics, Vol. 12, No. 2, 1989, pp. 169–174. https://doi.org/10.2514/3.20387 LinkGoogle Scholar[11] Imado F., Kuroda T. and Miwa S., "Optimal Thrust Control of a Missile with a Pulse Motor," Journal of Guidance, Control, and Dynamics, Vol. 14, No. 2, 1991, pp. 377–382. https://doi.org/10.2514/3.20649 LinkGoogle Scholar[12] Lu P., "Introducing Computational Guidance and Control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 193–193. https://doi.org/10.2514/1.G002745 LinkGoogle Scholar[13] Liu X., Shen Z. and Lu P., "Entry Trajectory Optimization by Second-Order Cone Programming," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 2, 2016, pp. 227–241. https://doi.org/10.2514/1.G001210 LinkGoogle Scholar[14] Wang Z. and Grant M. J., "Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2603–2615. https://doi.org/10.2514/1.G002150 LinkGoogle Scholar[15] Szmuk M., Eren U. and Acikmese B., "Successive Convexification for Mars 6-DoF Powered Descent Landing Guidance," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2017-1500, 2017. https://doi.org/10.2514/6.2017-1500 LinkGoogle Scholar[16] Liu X., Shen Z. and Lu P., "Exact Convex Relaxation for Optimal Flight of Aerodynamically Controlled Missiles," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 4, 2016, pp. 1881–1892. https://doi.org/10.1109/TAES.2016.150741 CrossrefGoogle Scholar[17] Benedikter B., Zavoli A., Colasurdo G., Pizzurro S. and Cavallini E., "Convex Approach to Three-Dimensional Launch Vehicle Ascent Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 6, 2021, pp. 1116–1131. https://doi.org/10.2514/1.G005376 LinkGoogle Scholar[18] Liu X., "Fuel-Optimal Rocket Landing with Aerodynamic Controls," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 65–77. https://doi.org/10.2514/1.G003537 LinkGoogle Scholar[19] Sagliano M., Heidecker A., Macés Hernández J., Farì S., Schlotterer M., Woicke S., Seelbinder D. and Dumont E., "Onboard Guidance for Reusable Rockets: Aerodynamic Descent and Powered Landing," AIAA Scitech 2021 Forum, AIAA Paper 2021-0862, 2021. https://doi.org/10.2514/6.2021-0862 LinkGoogle Scholar[20] Wang J., Zhang R. and Li H., "Onboard Optimization of Multi-Arc Trajectories with Constraints on Duration of Arcs," Acta Astronautica, Vol. 192, March 2022, pp. 434–442. https://doi.org/10.1016/j.actaastro.2021.12.023 CrossrefGoogle Scholar[21] Wang Z. and Lu Y., "Improved Sequential Convex Programming Algorithms for Entry Trajectory Optimization," Journal of Spacecraft and Rockets, Vol. 57, No. 6, 2020, pp. 1373–1386. https://doi.org/10.2514/1.A34640 LinkGoogle Scholar[22] Wang J. and Cui N., "A Pseudospectral-Convex Optimization Algorithm for Rocket Landing Guidance," 2018 AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1871, 2018. https://doi.org/10.2514/6.2018-1871 LinkGoogle Scholar[23] Liu X., Shen Z. and Lu P., "Solving the Maximum-Crossrange Problem via Successive Second-Order Cone Programming with a Line Search," Aerospace Science and Technology, Vol. 47, Dec. 2015, pp. 10–20. https://doi.org/10.1016/j.ast.2015.09.008 CrossrefGoogle Scholar[24] Sagliano M., "Pseudospectral Convex Optimization for Powered Descent and Landing," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018, pp. 320–334. https://doi.org/10.2514/1.G002818 LinkGoogle Scholar[25] Sagliano M. and Mooij E., "Optimal Drag-Energy Entry Guidance via Pseudospectral Convex Optimization," Aerospace Science and Technology, Vol. 117, Oct. 2021, Paper 106946. https://doi.org/10.1016/j.ast.2021.106946 CrossrefGoogle Scholar[26] Sagliano M., "Generalized hp Pseudospectral-Convex Programming for Powered Descent and Landing," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 7, 2019, pp. 1562–1570. https://doi.org/10.2514/1.G003731 LinkGoogle Scholar[27] Lei X., Hongbo Z., Xiang Z. and Guojian T., "Hp-Adaptive Pseudospectral Convex Optimization for Rocket Powered Landing Trajectory Planning," 2019 Chinese Automation Congress (CAC), IEEE, New York, 2019, pp. 895–900. https://doi.org/10.1109/cac48633.2019.8996784 Google Scholar[28] Zhou X., He R.-Z., Zhang H.-B., Tang G.-J. and Bao W.-M., "Sequential Convex Programming Method Using Adaptive Mesh Refinement for Entry Trajectory Planning Problem," Aerospace Science and Technology, Vol. 109, Feb. 2021, Paper 106374. https://doi.org/10.1016/j.ast.2020.106374 Google Scholar[29] Pei P. and Wang J., "Near-Optimal Guidance with Impact Angle and Velocity Constraints Using Sequential Convex Programming," Mathematical Problems in Engineering, Vol. 2019, Oct. 2019, pp. 1–14. https://doi.org/10.1155/2019/2065730 CrossrefGoogle Scholar[30] Garg D., Patterson M., Hager W. W., Rao A. V., Benson D. A. and Huntington G. T., "A Unified Framework for the Numerical Solution of Optimal Control Problems Using Pseudospectral Methods," Automatica, Vol. 46, No. 11, 2010, pp. 1843–1851. https://doi.org/10.1016/j.automatica.2010.06.048 CrossrefGoogle Scholar[31] Kim B., Lee C.-H., Tahk M.-J. and He S., "A New Biased Proportional Navigation Guidance for Decelerating Targets," Advances in Guidance, Navigation and Control, Springer, Singapore, 2022, pp. 2489–2500. https://doi.org/10.1007/978-981-15-8155-7_209 Google Scholar[32] Nocedal J. and Yuan Y.-X., "Combining Trust Region and Line Search Techniques," Advances in Nonlinear Programming, Springer, Boston, MA, 1998, pp. 153–175. https://doi.org/10.1007/978-1-4613-3335-7_7 Google Scholar[33] "MOSEK Optimization Toolbox for MATLAB," User's Guide and Reference Manual, Ver. 4, MOSEK ApS, 2019. Google Scholar[34] Patterson M. A. and Rao A. V., "GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming," ACM Transactions on Mathematical Software (TOMS), Vol. 41, No. 1, 2014, pp. 1–37. https://doi.org/10.1145/2558904 CrossrefGoogle Scholar[35] Dueri D., Açıkmeşe B., Scharf D. P. and Harris M. W., "Customized Real-Time Interior-Point Methods for Onboard Powered-Descent Guidance," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 197–212. https://doi.org/10.2514/1.G001480 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. KeywordsOptimal Midcourse GuidanceDual-pulse RocketConvex ProgrammingComputational GuidanceLong Range Air-to-Air MissileAcknowledgmentsThis work was supported by Theater Defense Research Center funded by Defense Acquisition Program Administration under Grant UD200043CD.PDF Received7 April 2022Accepted16 April 2023Published online26 May 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
眼睛大又蓝完成签到,获得积分10
刚刚
kangkang完成签到,获得积分10
刚刚
1秒前
1秒前
绵绵完成签到,获得积分10
1秒前
2秒前
Mlwwq完成签到,获得积分10
2秒前
2秒前
小皮蛋儿完成签到,获得积分10
2秒前
lyn发布了新的文献求助10
2秒前
JUSTs0so完成签到,获得积分10
3秒前
失联者完成签到,获得积分10
3秒前
感性的神级完成签到,获得积分10
3秒前
眯眯眼的谷冬完成签到 ,获得积分10
3秒前
3秒前
花莫凋零发布了新的文献求助10
4秒前
szh123完成签到,获得积分10
4秒前
4秒前
安息香发布了新的文献求助10
4秒前
核桃完成签到,获得积分10
4秒前
丹dan发布了新的文献求助10
4秒前
4秒前
科研通AI5应助大方嵩采纳,获得10
5秒前
5秒前
HYG发布了新的文献求助30
5秒前
5秒前
宝贝发布了新的文献求助10
5秒前
FashionBoy应助tulip采纳,获得10
5秒前
万泉部诗人完成签到,获得积分10
6秒前
文静千愁发布了新的文献求助10
6秒前
YAN发布了新的文献求助10
6秒前
马洛发布了新的文献求助10
6秒前
6秒前
qiqi完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
喻辰星发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762