scDFC: A deep fusion clustering method for single-cell RNA-seq data

聚类分析 计算机科学 Python(编程语言) 数据挖掘 人工智能 模糊聚类 特征(语言学) 模式识别(心理学) 语言学 操作系统 哲学
作者
Dayu Hu,Ke Liang,Sihang Zhou,Wenxuan Tu,Meng Liu,Xinwang Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:19
标识
DOI:10.1093/bib/bbad216
摘要

Clustering methods have been widely used in single-cell RNA-seq data for investigating tumor heterogeneity. Since traditional clustering methods fail to capture the high-dimension methods, deep clustering methods have drawn increasing attention these years due to their promising strengths on the task. However, existing methods consider either the attribute information of each cell or the structure information between different cells. In other words, they cannot sufficiently make use of all of this information simultaneously. To this end, we propose a novel single-cell deep fusion clustering model, which contains two modules, i.e. an attributed feature clustering module and a structure-attention feature clustering module. More concretely, two elegantly designed autoencoders are built to handle both features regardless of their data types. Experiments have demonstrated the validity of the proposed approach, showing that it is efficient to fuse attributes, structure, and attention information on single-cell RNA-seq data. This work will be further beneficial for investigating cell subpopulations and tumor microenvironment. The Python implementation of our work is now freely available at https://github.com/DayuHuu/scDFC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得30
刚刚
wanci应助科研通管家采纳,获得10
刚刚
研友_Zr2mxZ完成签到,获得积分10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
深情安青应助啦啦啦采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
Q11完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得10
2秒前
1+1应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
1+1应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
卡皮巴拉发布了新的文献求助10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
老爱学习了应助该饮茶了采纳,获得20
3秒前
xbchen完成签到,获得积分10
3秒前
万能图书馆应助zhzh0618采纳,获得10
3秒前
4秒前
叶子发布了新的文献求助10
4秒前
国服懒羊羊完成签到,获得积分10
4秒前
4秒前
Yaoyuqi发布了新的文献求助10
4秒前
4秒前
科研狗完成签到,获得积分10
5秒前
热情的天蓝应助lxx采纳,获得10
5秒前
爆米花应助抗体药物偶联采纳,获得10
5秒前
Owen应助缓慢的中蓝采纳,获得10
6秒前
寒冷不凡发布了新的文献求助10
6秒前
快中文章啊完成签到,获得积分10
6秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730023
求助须知:如何正确求助?哪些是违规求助? 3274861
关于积分的说明 9989324
捐赠科研通 2990315
什么是DOI,文献DOI怎么找? 1641017
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748237