A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models

敏感性分析 计算机科学 机器学习 不确定度分析 不确定度量化 随机森林 预测区间 参数统计 预测建模 过程(计算) 水文模型 数据挖掘 人工智能 数学 统计 模拟 气候学 操作系统 地质学
作者
Abhinanda Roy,K. S. Kasiviswanathan,Sandhya Patidar,Adebayo J. Adeloye,B. Soundharajan,Chandra Shekhar Prasad Ojha
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (6) 被引量:2
标识
DOI:10.1029/2023wr034630
摘要

Abstract Modeling hydrological processes for managing the available water resources effectively is often complex due to the existence of high nonlinearity, and the associated prediction uncertainty mainly arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance. This paper presents a novel modeling framework for minimizing the prediction uncertainty in the streamflow simulation of the conceptual hydrological model (HBV) by integrating with the Bayesian‐based Particle Filter technique (PF) and machine learning algorithm (Random Forest algorithm, RF). Initially, the streamflow prediction interval (PI) is derived from the stochastically estimated parameters of the HBV model through the PF technique (HBV‐PF model). As the HBV‐PF model quantifies only parametric uncertainty, the RF algorithm was employed (HBV‐PF‐RF model) for further minimizing the prediction uncertainty by inherently taking care of different sources of uncertainty. The RF algorithm inherently combines the physics of the hydrological system (i.e., process‐based variables) with machine learning‐based approach to minimize the overall prediction uncertainty. The proposed framework was analyzed on Nepal and India's Sunkoshi and Beas River basins, through several statistical performance indices for assessing the accuracy and uncertainty of the model prediction. The framework was observed to be consistently improving the model performance minimizing the uncertainty in both watersheds. Therefore, the proposed framework can be considered to be more reliable in improving the prediction capability of hydrological models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴糖完成签到,获得积分10
1秒前
pjn完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
清子关注了科研通微信公众号
2秒前
朴实的乐枫完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
希望天下0贩的0应助elfff采纳,获得10
4秒前
学术智子发布了新的文献求助10
5秒前
5秒前
专注的觅儿完成签到,获得积分20
6秒前
6秒前
兴奋的飞薇完成签到,获得积分10
6秒前
CodeCraft应助psj采纳,获得10
6秒前
6秒前
修狗儿发布了新的文献求助10
6秒前
6秒前
HAN完成签到,获得积分10
6秒前
lucky发布了新的文献求助10
7秒前
李健的粉丝团团长应助xxl采纳,获得10
7秒前
7秒前
7秒前
爆米花应助666采纳,获得10
8秒前
fly发布了新的文献求助30
8秒前
凉汐完成签到,获得积分20
8秒前
白一航发布了新的文献求助10
9秒前
10秒前
jiang发布了新的文献求助10
10秒前
keres发布了新的文献求助10
10秒前
tingting1完成签到,获得积分10
10秒前
云边发布了新的文献求助10
10秒前
腊八蒜完成签到,获得积分10
10秒前
yjh发布了新的文献求助20
11秒前
伤逝1990发布了新的文献求助10
11秒前
传奇3应助哈哈镜阿姐采纳,获得10
11秒前
白茅茅发布了新的文献求助30
12秒前
gh完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961