A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models

敏感性分析 计算机科学 机器学习 不确定度分析 不确定度量化 随机森林 预测区间 参数统计 预测建模 过程(计算) 水文模型 数据挖掘 人工智能 数学 统计 模拟 气候学 操作系统 地质学
作者
Abhinanda Roy,K. S. Kasiviswanathan,Sandhya Patidar,Adebayo J. Adeloye,B. Soundharajan,Chandra Shekhar Prasad Ojha
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (6) 被引量:2
标识
DOI:10.1029/2023wr034630
摘要

Abstract Modeling hydrological processes for managing the available water resources effectively is often complex due to the existence of high nonlinearity, and the associated prediction uncertainty mainly arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance. This paper presents a novel modeling framework for minimizing the prediction uncertainty in the streamflow simulation of the conceptual hydrological model (HBV) by integrating with the Bayesian‐based Particle Filter technique (PF) and machine learning algorithm (Random Forest algorithm, RF). Initially, the streamflow prediction interval (PI) is derived from the stochastically estimated parameters of the HBV model through the PF technique (HBV‐PF model). As the HBV‐PF model quantifies only parametric uncertainty, the RF algorithm was employed (HBV‐PF‐RF model) for further minimizing the prediction uncertainty by inherently taking care of different sources of uncertainty. The RF algorithm inherently combines the physics of the hydrological system (i.e., process‐based variables) with machine learning‐based approach to minimize the overall prediction uncertainty. The proposed framework was analyzed on Nepal and India's Sunkoshi and Beas River basins, through several statistical performance indices for assessing the accuracy and uncertainty of the model prediction. The framework was observed to be consistently improving the model performance minimizing the uncertainty in both watersheds. Therefore, the proposed framework can be considered to be more reliable in improving the prediction capability of hydrological models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamsli完成签到,获得积分10
刚刚
虚幻青曼完成签到,获得积分10
刚刚
TTT完成签到,获得积分10
1秒前
waomi完成签到 ,获得积分10
2秒前
于丽萍发布了新的文献求助10
2秒前
阿湫发布了新的文献求助10
4秒前
Ava应助可靠的又亦采纳,获得10
6秒前
1111111发布了新的文献求助10
6秒前
7秒前
今后应助飞翔的企鹅采纳,获得10
11秒前
真水无香发布了新的文献求助10
12秒前
脑洞疼应助马库拉格采纳,获得10
12秒前
顾矜应助lele采纳,获得10
12秒前
12秒前
科研公主完成签到,获得积分10
16秒前
17秒前
时生完成签到 ,获得积分10
18秒前
我是老大应助愉快又莲采纳,获得10
19秒前
可爱的函函应助平淡博采纳,获得10
19秒前
21秒前
浮游应助彪壮的绮烟采纳,获得10
22秒前
在水一方应助ztt采纳,获得10
22秒前
22秒前
22秒前
浮游应助花开城北采纳,获得10
23秒前
26秒前
butterfly发布了新的文献求助10
26秒前
马库拉格发布了新的文献求助10
26秒前
27秒前
娜na完成签到,获得积分10
29秒前
30秒前
31秒前
32秒前
李健应助冯前浪采纳,获得10
32秒前
33秒前
33秒前
33秒前
holmes完成签到 ,获得积分10
33秒前
小吴完成签到,获得积分10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408