A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models

敏感性分析 计算机科学 机器学习 不确定度分析 不确定度量化 随机森林 预测区间 参数统计 预测建模 过程(计算) 水文模型 数据挖掘 人工智能 数学 统计 模拟 气候学 操作系统 地质学
作者
Abhinanda Roy,K. S. Kasiviswanathan,Sandhya Patidar,Adebayo J. Adeloye,B. Soundharajan,Chandra Shekhar Prasad Ojha
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (6) 被引量:2
标识
DOI:10.1029/2023wr034630
摘要

Abstract Modeling hydrological processes for managing the available water resources effectively is often complex due to the existence of high nonlinearity, and the associated prediction uncertainty mainly arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance. This paper presents a novel modeling framework for minimizing the prediction uncertainty in the streamflow simulation of the conceptual hydrological model (HBV) by integrating with the Bayesian‐based Particle Filter technique (PF) and machine learning algorithm (Random Forest algorithm, RF). Initially, the streamflow prediction interval (PI) is derived from the stochastically estimated parameters of the HBV model through the PF technique (HBV‐PF model). As the HBV‐PF model quantifies only parametric uncertainty, the RF algorithm was employed (HBV‐PF‐RF model) for further minimizing the prediction uncertainty by inherently taking care of different sources of uncertainty. The RF algorithm inherently combines the physics of the hydrological system (i.e., process‐based variables) with machine learning‐based approach to minimize the overall prediction uncertainty. The proposed framework was analyzed on Nepal and India's Sunkoshi and Beas River basins, through several statistical performance indices for assessing the accuracy and uncertainty of the model prediction. The framework was observed to be consistently improving the model performance minimizing the uncertainty in both watersheds. Therefore, the proposed framework can be considered to be more reliable in improving the prediction capability of hydrological models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李成哲发布了新的文献求助10
刚刚
英姑应助淀粉采纳,获得10
刚刚
SciGPT应助淀粉采纳,获得10
刚刚
yyc发布了新的文献求助10
刚刚
丘比特应助小王采纳,获得10
1秒前
2秒前
马腾完成签到,获得积分10
2秒前
goodbuhui发布了新的文献求助10
3秒前
清爽含灵发布了新的文献求助10
3秒前
怡然以南完成签到,获得积分10
3秒前
4秒前
彭于晏应助啾一口香菜采纳,获得10
4秒前
苗条的成仁完成签到,获得积分10
4秒前
爱吃麻辣香锅完成签到,获得积分10
4秒前
5秒前
潘道士完成签到 ,获得积分10
5秒前
Zachary完成签到,获得积分10
5秒前
Kenzonvay发布了新的文献求助10
6秒前
6秒前
6秒前
在在在在在在1完成签到,获得积分20
7秒前
加贝发布了新的文献求助10
8秒前
8秒前
EthanChan完成签到,获得积分10
8秒前
8秒前
华仔应助优秀的怀蕊采纳,获得10
9秒前
温暖完成签到,获得积分20
9秒前
清爽含灵完成签到,获得积分10
10秒前
10秒前
11秒前
jnshen完成签到 ,获得积分10
11秒前
陈懒懒发布了新的文献求助10
11秒前
孙老师发布了新的文献求助10
12秒前
yyc完成签到,获得积分20
13秒前
13秒前
13秒前
13秒前
华仔应助YoungY采纳,获得10
13秒前
老实惊蛰发布了新的文献求助10
14秒前
香蕉觅云应助小标采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122