A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models

敏感性分析 计算机科学 机器学习 不确定度分析 不确定度量化 随机森林 预测区间 参数统计 预测建模 过程(计算) 水文模型 数据挖掘 人工智能 数学 统计 模拟 气候学 操作系统 地质学
作者
Abhinanda Roy,K. S. Kasiviswanathan,Sandhya Patidar,Adebayo J. Adeloye,B. Soundharajan,Chandra Shekhar Prasad Ojha
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (6) 被引量:2
标识
DOI:10.1029/2023wr034630
摘要

Abstract Modeling hydrological processes for managing the available water resources effectively is often complex due to the existence of high nonlinearity, and the associated prediction uncertainty mainly arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance. This paper presents a novel modeling framework for minimizing the prediction uncertainty in the streamflow simulation of the conceptual hydrological model (HBV) by integrating with the Bayesian‐based Particle Filter technique (PF) and machine learning algorithm (Random Forest algorithm, RF). Initially, the streamflow prediction interval (PI) is derived from the stochastically estimated parameters of the HBV model through the PF technique (HBV‐PF model). As the HBV‐PF model quantifies only parametric uncertainty, the RF algorithm was employed (HBV‐PF‐RF model) for further minimizing the prediction uncertainty by inherently taking care of different sources of uncertainty. The RF algorithm inherently combines the physics of the hydrological system (i.e., process‐based variables) with machine learning‐based approach to minimize the overall prediction uncertainty. The proposed framework was analyzed on Nepal and India's Sunkoshi and Beas River basins, through several statistical performance indices for assessing the accuracy and uncertainty of the model prediction. The framework was observed to be consistently improving the model performance minimizing the uncertainty in both watersheds. Therefore, the proposed framework can be considered to be more reliable in improving the prediction capability of hydrological models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挚终发布了新的文献求助10
刚刚
1秒前
浮游应助高高的山兰采纳,获得10
1秒前
1秒前
祁纯发布了新的文献求助10
1秒前
2秒前
2秒前
VDC应助软嘴唇采纳,获得30
2秒前
超级的金毛完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
wyr525完成签到,获得积分10
5秒前
YuMit完成签到,获得积分10
5秒前
6秒前
6秒前
仲半邪发布了新的文献求助10
6秒前
6秒前
pan发布了新的文献求助10
7秒前
神勇中道完成签到,获得积分10
7秒前
7秒前
浮游应助聪慧的橘子采纳,获得10
7秒前
这是对吧完成签到,获得积分10
7秒前
Tiome完成签到,获得积分10
7秒前
FashionBoy应助Ec2ved采纳,获得10
8秒前
8秒前
李李发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
称心沁完成签到,获得积分10
9秒前
Leisure_Lee完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
wanci应助文艺凉面采纳,获得10
10秒前
10秒前
梦若浮生发布了新的文献求助30
11秒前
Princesxy关注了科研通微信公众号
11秒前
Lucas应助皮革厂柳叶刀采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589298
求助须知:如何正确求助?哪些是违规求助? 4004485
关于积分的说明 12398008
捐赠科研通 3681414
什么是DOI,文献DOI怎么找? 2029114
邀请新用户注册赠送积分活动 1062604
科研通“疑难数据库(出版商)”最低求助积分说明 948309