亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Physics‐Aware Machine Learning‐Based Framework for Minimizing Prediction Uncertainty of Hydrological Models

敏感性分析 计算机科学 机器学习 不确定度分析 不确定度量化 随机森林 预测区间 参数统计 预测建模 过程(计算) 水文模型 数据挖掘 人工智能 数学 统计 模拟 气候学 操作系统 地质学
作者
Abhinanda Roy,K. S. Kasiviswanathan,Sandhya Patidar,Adebayo J. Adeloye,B. Soundharajan,Chandra Shekhar Prasad Ojha
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (6) 被引量:2
标识
DOI:10.1029/2023wr034630
摘要

Abstract Modeling hydrological processes for managing the available water resources effectively is often complex due to the existence of high nonlinearity, and the associated prediction uncertainty mainly arising from model inputs, parameters, and structure. Despite several attempts to quantify the model prediction uncertainty, reducing the same for improving the reliability of models is indispensable for their wider acceptance. This paper presents a novel modeling framework for minimizing the prediction uncertainty in the streamflow simulation of the conceptual hydrological model (HBV) by integrating with the Bayesian‐based Particle Filter technique (PF) and machine learning algorithm (Random Forest algorithm, RF). Initially, the streamflow prediction interval (PI) is derived from the stochastically estimated parameters of the HBV model through the PF technique (HBV‐PF model). As the HBV‐PF model quantifies only parametric uncertainty, the RF algorithm was employed (HBV‐PF‐RF model) for further minimizing the prediction uncertainty by inherently taking care of different sources of uncertainty. The RF algorithm inherently combines the physics of the hydrological system (i.e., process‐based variables) with machine learning‐based approach to minimize the overall prediction uncertainty. The proposed framework was analyzed on Nepal and India's Sunkoshi and Beas River basins, through several statistical performance indices for assessing the accuracy and uncertainty of the model prediction. The framework was observed to be consistently improving the model performance minimizing the uncertainty in both watersheds. Therefore, the proposed framework can be considered to be more reliable in improving the prediction capability of hydrological models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
洗洗完成签到,获得积分10
34秒前
科研通AI2S应助认真映寒采纳,获得10
35秒前
陈谨完成签到,获得积分10
1分钟前
刻苦小鸭子完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
HaCat应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
共享精神应助黄少年采纳,获得10
1分钟前
1分钟前
Linden_bd完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
黄少年发布了新的文献求助10
1分钟前
万能图书馆应助翁怜晴采纳,获得10
1分钟前
zmx完成签到 ,获得积分0
1分钟前
2分钟前
barn完成签到 ,获得积分10
2分钟前
阿然发布了新的文献求助10
2分钟前
hb完成签到,获得积分10
2分钟前
椛柚完成签到 ,获得积分10
2分钟前
shaylie完成签到 ,获得积分10
2分钟前
mini完成签到 ,获得积分10
2分钟前
梅赛德斯奔驰完成签到,获得积分10
2分钟前
run发布了新的文献求助10
2分钟前
2分钟前
Alice完成签到,获得积分10
2分钟前
aj发布了新的文献求助10
2分钟前
3分钟前
3分钟前
斯文败类应助LZYJJ采纳,获得10
3分钟前
注恤明完成签到,获得积分10
3分钟前
HaCat应助科研通管家采纳,获得10
3分钟前
HaCat应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302224
求助须知:如何正确求助?哪些是违规求助? 4449431
关于积分的说明 13848340
捐赠科研通 4335611
什么是DOI,文献DOI怎么找? 2380451
邀请新用户注册赠送积分活动 1375435
关于科研通互助平台的介绍 1341616