Online Chatter Identification for Thin-Walled Parts Machining Based on Improved Multisensor Signal Fusion and Multiscale Entropy

机械加工 振动 熵(时间箭头) 信号(编程语言) 工程类 结构工程 声学 计算机科学 机械工程 物理 量子力学 程序设计语言
作者
Haibo Liu,H-J Miao,Chengxin Wang,Qile Bo,Yishun Cheng,Qi Luo,Yongqing Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:1
标识
DOI:10.1109/tim.2023.3267358
摘要

Thin-walled workpieces frequently appear to chatter during milling, causing the creation of vibration patterns on the surface of the workpiece, which affects the machining quality and workpiece performance. Identification of online chatter is important for thin-walled parts. The vibration signal associated with chatter changes dynamically throughout the milling process due to changes in tool position, removal of workpiece material, and transmission-related vibration signal attenuation characteristics, making reliable chatter identification difficult. This research proposes a unique online chatter identification approach for the machining of thin-walled parts based on improved multi-sensor signal fusion and multi-scale entropy. In order to acquire the fused vibration signals, the vibration signals produced during the machining of thin-walled parts are first acquired by sensors at various test sites and adaptively given weight coefficients by the improved Hausdorff distance and distance factor. Second, using the multi-scale sample entropy (MSSE) and multi-scale weighted permutation entropy (MSWPE), the eigenvalues of the fused vibration signals are obtained. Finally, the trained Logistic regression (LR) classification model is used to determine the vibration status of thin-walled parts. The analysis’s results demonstrated that the technique can properly identify the vibration state of thin-walled parts, and that the fusion signal can reflect the vibration state at the tool contact site more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助三一采纳,获得10
1秒前
1秒前
务实如之完成签到,获得积分10
2秒前
2秒前
Alaskan完成签到,获得积分20
3秒前
ying发布了新的文献求助10
3秒前
3秒前
回归自我发布了新的文献求助10
5秒前
852应助fengxiaoyou采纳,获得10
6秒前
林夕君完成签到,获得积分10
6秒前
TT2022发布了新的文献求助10
6秒前
cen发布了新的文献求助10
6秒前
丘比特应助wan采纳,获得10
7秒前
7秒前
Alaskan发布了新的文献求助10
7秒前
可可杨发布了新的文献求助10
8秒前
圆圆圆完成签到 ,获得积分10
8秒前
wtc发布了新的文献求助10
8秒前
希望天下0贩的0应助wjm采纳,获得10
9秒前
9秒前
完美世界应助JJ采纳,获得10
10秒前
11秒前
12秒前
燕知南发布了新的文献求助10
13秒前
xiaoxina发布了新的文献求助10
13秒前
melody发布了新的文献求助10
13秒前
迷路尔珍完成签到 ,获得积分10
14秒前
WANG发布了新的文献求助10
14秒前
Cc完成签到,获得积分10
14秒前
14秒前
文艺易蓉完成签到,获得积分10
15秒前
LQTZST发布了新的文献求助20
15秒前
许源智啊完成签到 ,获得积分10
16秒前
17秒前
18秒前
19秒前
直率绫发布了新的文献求助10
20秒前
yu完成签到,获得积分10
20秒前
Magic完成签到,获得积分10
23秒前
zed66完成签到,获得积分10
24秒前
高分求助中
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089386
求助须知:如何正确求助?哪些是违规求助? 2741586
关于积分的说明 7565941
捐赠科研通 2392093
什么是DOI,文献DOI怎么找? 1268497
科研通“疑难数据库(出版商)”最低求助积分说明 614069
版权声明 598692