足细胞
自噬
PI3K/AKT/mTOR通路
安普克
细胞生物学
信号转导
蛋白激酶A
癌症研究
生物
激酶
肾
内分泌学
生物化学
蛋白尿
细胞凋亡
作者
Hongzhou Lin,Huihui Chen,Rengcheng Qian,Tang Guo-qi,Yinjuan Ding,Yalan Jiang,Congde Chen,Dexuan Wang,Maoping Chu,Xiaoling Guo
标识
DOI:10.1016/j.cbi.2023.110559
摘要
Nephrotic syndrome (NS) is a chronic kidney disease mainly caused by impaired podocytes, ultimately resulting in massive proteinuria or even end-stage renal disease (ESRD).The objective of this study was to explore the potential pathogenesis of NS caused by podocyte injury, and further explore the underlying mechanism through data mining, bioinformatics analysis, and experimental verification. The integrated analyses including Seurat, CellChat, gene ontology (GO), and molecular docking were performed based on the single-cell RNA-seq data (scRNA-seq). The adriamycin (ADR)-induced podocyte injury model in vitro was established to conduct the experimental verification for bioinformatics analysis results through western blot and real-time quantitative PCR (RT-qPCR).The results of bioinformatics analysis revealed that the bone morphogenetic protein (BMP) signaling pathway was involved in the podocyte-to-podocyte communication, which plays a crucial role in podocyte injury. The expression of BMP7 was significantly increased in ADR-induced podocytes through activating the Adenosine-monophosphate activated-protein kinase/Mammalian target of rapamycin (AMPK/mTOR) mediated autophagy pathway, and these findings were confirmed by in vitro experiments.This study first demonstrated that BMP7 participated in ADR-induced podocyte injury. The BMP7/AMPK/mTOR mediated autophagy pathway may play a crucial role in podocyte injury, which may be the potential therapeutic target for NS patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI