Continuous Cross-resolution Remote Sensing Image Change Detection

人工智能 计算机科学 图像分辨率 分辨率(逻辑) 像素 变更检测 计算机视觉 编码器 模式识别(心理学) 不变(物理) 图像(数学) 数学 数学物理 操作系统
作者
Hao Chen,Haotian Zhang,Keyan Chen,Chenyao Zhou,Song Chen,Zhengxia Zou,Zhenwei Shi
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2305.14722
摘要

Most contemporary supervised Remote Sensing (RS) image Change Detection (CD) approaches are customized for equal-resolution bitemporal images. Real-world applications raise the need for cross-resolution change detection, aka, CD based on bitemporal images with different spatial resolutions. Given training samples of a fixed bitemporal resolution difference (ratio) between the high-resolution (HR) image and the low-resolution (LR) one, current cross-resolution methods may fit a certain ratio but lack adaptation to other resolution differences. Toward continuous cross-resolution CD, we propose scale-invariant learning to enforce the model consistently predicting HR results given synthesized samples of varying resolution differences. Concretely, we synthesize blurred versions of the HR image by random downsampled reconstructions to reduce the gap between HR and LR images. We introduce coordinate-based representations to decode per-pixel predictions by feeding the coordinate query and corresponding multi-level embedding features into an MLP that implicitly learns the shape of land cover changes, therefore benefiting recognizing blurred objects in the LR image. Moreover, considering that spatial resolution mainly affects the local textures, we apply local-window self-attention to align bitemporal features during the early stages of the encoder. Extensive experiments on two synthesized and one real-world different-resolution CD datasets verify the effectiveness of the proposed method. Our method significantly outperforms several vanilla CD methods and two cross-resolution CD methods on the three datasets both in in-distribution and out-of-distribution settings. The empirical results suggest that our method could yield relatively consistent HR change predictions regardless of varying bitemporal resolution ratios. Our code is available at \url{https://github.com/justchenhao/SILI_CD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raewenning发布了新的文献求助10
刚刚
1秒前
1秒前
青栀发布了新的文献求助10
2秒前
思源应助尊敬的钻石采纳,获得10
2秒前
sg123_完成签到,获得积分10
2秒前
跳跃的白猫完成签到 ,获得积分10
2秒前
3秒前
diong完成签到,获得积分20
3秒前
3秒前
勤奋的盼山完成签到 ,获得积分10
4秒前
123发布了新的文献求助10
4秒前
雨晴完成签到,获得积分10
4秒前
4秒前
5秒前
英姑应助朴素的寻真采纳,获得10
5秒前
www发布了新的文献求助10
5秒前
6秒前
6秒前
雪球1248完成签到,获得积分10
6秒前
6秒前
浮游应助怕孤单的惜梦采纳,获得10
7秒前
scale发布了新的文献求助10
7秒前
8秒前
luschancheng完成签到,获得积分10
8秒前
9秒前
目土土发布了新的文献求助10
9秒前
思源应助蒸制采纳,获得10
9秒前
zs完成签到,获得积分10
9秒前
西部牛仔发布了新的文献求助10
9秒前
jun发布了新的文献求助10
9秒前
栖木完成签到,获得积分10
10秒前
Akim应助Steve采纳,获得10
11秒前
充电宝应助西瓜采纳,获得10
11秒前
12秒前
yoyo发布了新的文献求助10
12秒前
13秒前
一朵约尔发布了新的文献求助10
13秒前
李健应助无限小松鼠采纳,获得10
14秒前
浮游应助悲凉的小馒头采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192122
求助须知:如何正确求助?哪些是违规求助? 4375170
关于积分的说明 13623898
捐赠科研通 4229344
什么是DOI,文献DOI怎么找? 2319853
邀请新用户注册赠送积分活动 1318385
关于科研通互助平台的介绍 1268536