Continuous Cross-resolution Remote Sensing Image Change Detection

人工智能 计算机科学 图像分辨率 分辨率(逻辑) 像素 变更检测 计算机视觉 编码器 模式识别(心理学) 不变(物理) 图像(数学) 嵌入 高分辨率 遥感 数学 地理 操作系统 数学物理
作者
Hao Chen,Haotian Zhang,Keyan Chen,Cheng Zhou,Song Chen,Ziheng Zhou,Zhenwei Shi
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.1109/tgrs.2023.3325829
摘要

Most contemporary supervised Remote Sensing (RS) image Change Detection (CD) approaches are customized for equal-resolution bitemporal images. Real-world applications raise the need for cross-resolution change detection, aka, CD based on bitemporal images with different spatial resolutions. Given training samples of a fixed bitemporal resolution difference (ratio) between the high-resolution (HR) image and the low-resolution (LR) one, current cross-resolution methods may fit a certain ratio but lack adaptation to other resolution differences. Toward continuous cross-resolution CD, we propose scale-invariant learning to enforce the model consistently predicting HR results given synthesized samples of varying resolution differences. Concretely, we synthesize blurred versions of the HR image by random downsampled reconstructions to reduce the gap between HR and LR images. We introduce coordinate-based representations to decode per-pixel predictions by feeding the coordinate query and corresponding multi-level embedding features into an MLP that implicitly learns the shape of land cover changes, therefore benefiting recognizing blurred objects in the LR image. Moreover, considering that spatial resolution mainly affects the local textures, we apply local-window self-attention to align bitemporal features during the early stages of the encoder. Extensive experiments on two synthesized and one real-world different-resolution CD datasets verify the effectiveness of the proposed method. Our method significantly outperforms several vanilla CD methods and two cross-resolution CD methods on the three datasets both in in-distribution and out-of-distribution settings. The empirical results suggest that our method could yield relatively consistent HR change predictions regardless of varying bitemporal resolution ratios. Our code is available at \url{https://github.com/justchenhao/SILI_CD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanlee完成签到,获得积分10
刚刚
NexusExplorer应助害羞的败采纳,获得10
1秒前
77seven完成签到,获得积分10
1秒前
咕噜咕噜完成签到 ,获得积分10
2秒前
4秒前
Flora发布了新的文献求助30
5秒前
5秒前
好运连连完成签到,获得积分10
5秒前
小雨点发布了新的文献求助10
8秒前
9秒前
lucky完成签到,获得积分20
9秒前
虚心雅阳完成签到,获得积分10
9秒前
10秒前
游戏人间发布了新的文献求助10
10秒前
12秒前
13秒前
zkeeee发布了新的文献求助10
15秒前
QinQin发布了新的文献求助10
15秒前
缓慢的从寒完成签到,获得积分10
17秒前
17秒前
呆萌板凳完成签到,获得积分20
17秒前
李健的小迷弟应助Hosea采纳,获得10
18秒前
18秒前
19秒前
21秒前
析界成微发布了新的文献求助10
22秒前
Amber完成签到 ,获得积分10
22秒前
至秦发布了新的文献求助10
22秒前
意昂完成签到 ,获得积分20
23秒前
幻波玉米皮关注了科研通微信公众号
25秒前
积极问晴发布了新的文献求助10
25秒前
吴烦恼完成签到,获得积分10
25秒前
GISertttt发布了新的文献求助10
26秒前
27秒前
duanhuiyuan举报yingjin求助涉嫌违规
27秒前
28秒前
yinshan完成签到 ,获得积分10
28秒前
情怀应助QinQin采纳,获得10
29秒前
留猪发布了新的文献求助30
30秒前
heheda完成签到,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466394
求助须知:如何正确求助?哪些是违规求助? 3059156
关于积分的说明 9065091
捐赠科研通 2749616
什么是DOI,文献DOI怎么找? 1508644
科研通“疑难数据库(出版商)”最低求助积分说明 696987
邀请新用户注册赠送积分活动 696733