Continuous Cross-resolution Remote Sensing Image Change Detection

人工智能 计算机科学 图像分辨率 分辨率(逻辑) 像素 变更检测 计算机视觉 编码器 模式识别(心理学) 不变(物理) 图像(数学) 数学 数学物理 操作系统
作者
Hao Chen,Haotian Zhang,Keyan Chen,Chenyao Zhou,Song Chen,Zhengxia Zou,Zhenwei Shi
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2305.14722
摘要

Most contemporary supervised Remote Sensing (RS) image Change Detection (CD) approaches are customized for equal-resolution bitemporal images. Real-world applications raise the need for cross-resolution change detection, aka, CD based on bitemporal images with different spatial resolutions. Given training samples of a fixed bitemporal resolution difference (ratio) between the high-resolution (HR) image and the low-resolution (LR) one, current cross-resolution methods may fit a certain ratio but lack adaptation to other resolution differences. Toward continuous cross-resolution CD, we propose scale-invariant learning to enforce the model consistently predicting HR results given synthesized samples of varying resolution differences. Concretely, we synthesize blurred versions of the HR image by random downsampled reconstructions to reduce the gap between HR and LR images. We introduce coordinate-based representations to decode per-pixel predictions by feeding the coordinate query and corresponding multi-level embedding features into an MLP that implicitly learns the shape of land cover changes, therefore benefiting recognizing blurred objects in the LR image. Moreover, considering that spatial resolution mainly affects the local textures, we apply local-window self-attention to align bitemporal features during the early stages of the encoder. Extensive experiments on two synthesized and one real-world different-resolution CD datasets verify the effectiveness of the proposed method. Our method significantly outperforms several vanilla CD methods and two cross-resolution CD methods on the three datasets both in in-distribution and out-of-distribution settings. The empirical results suggest that our method could yield relatively consistent HR change predictions regardless of varying bitemporal resolution ratios. Our code is available at \url{https://github.com/justchenhao/SILI_CD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静白翠发布了新的文献求助10
刚刚
刚刚
灿烂千阳发布了新的文献求助10
刚刚
彭静琳发布了新的文献求助10
1秒前
iNk应助瞬间de回眸采纳,获得10
1秒前
爆米花应助Kuhaku采纳,获得20
1秒前
宋佳发布了新的文献求助10
1秒前
1秒前
1秒前
林钟望完成签到,获得积分10
1秒前
2秒前
2秒前
lllisa发布了新的文献求助10
2秒前
Magical发布了新的文献求助10
2秒前
JHK完成签到,获得积分20
2秒前
思源应助Scinature采纳,获得10
2秒前
3秒前
陶醉小笼包完成签到 ,获得积分10
3秒前
3秒前
小包子发布了新的文献求助20
3秒前
自由的夜天完成签到,获得积分20
4秒前
duoduo发布了新的文献求助10
5秒前
5秒前
JHK发布了新的文献求助10
5秒前
23333完成签到,获得积分10
5秒前
Liens发布了新的文献求助10
5秒前
Honahlee发布了新的文献求助10
6秒前
6秒前
HUANG_黄完成签到,获得积分10
6秒前
SS发布了新的文献求助30
6秒前
娇气的妙之完成签到,获得积分10
7秒前
NexusExplorer应助JY采纳,获得10
7秒前
李蕤蕤完成签到,获得积分10
7秒前
8秒前
8秒前
Lucas应助虎啊虎啊采纳,获得10
8秒前
8秒前
8秒前
glacierflame完成签到,获得积分10
9秒前
Morli完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836