Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助火星上的幻梦采纳,获得10
刚刚
蓝天完成签到,获得积分10
1秒前
3秒前
852应助aaaaarfv采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
Endlessway应助科研通管家采纳,获得20
4秒前
4秒前
悠悠完成签到,获得积分10
4秒前
xjcy应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得30
5秒前
xjcy应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
7秒前
小高高完成签到,获得积分10
9秒前
9秒前
9秒前
dd123发布了新的文献求助10
10秒前
11秒前
freeok完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
li发布了新的文献求助10
14秒前
14秒前
14秒前
cyyyyyyyyyy应助我的副本采纳,获得50
15秒前
keroro发布了新的文献求助10
16秒前
乔心发布了新的文献求助10
16秒前
乌啦啦完成签到,获得积分10
17秒前
彩色的恋风完成签到,获得积分10
17秒前
17秒前
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233472
求助须知:如何正确求助?哪些是违规求助? 2880022
关于积分的说明 8213600
捐赠科研通 2547449
什么是DOI,文献DOI怎么找? 1376954
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154