Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯发布了新的文献求助10
刚刚
丘比特应助度ewf采纳,获得10
1秒前
丽丽丽发布了新的文献求助10
1秒前
yyanxuemin919发布了新的文献求助10
1秒前
蘑菇完成签到 ,获得积分10
4秒前
jam发布了新的文献求助10
4秒前
5秒前
烟花应助ccc采纳,获得10
6秒前
拉长的诗蕊完成签到,获得积分10
6秒前
7秒前
大妙妙完成签到 ,获得积分10
10秒前
10秒前
里里完成签到 ,获得积分10
11秒前
韩妙发布了新的文献求助10
12秒前
科研通AI6应助丽丽丽采纳,获得10
13秒前
太渊完成签到 ,获得积分10
13秒前
ccc发布了新的文献求助10
15秒前
爆米花应助chen采纳,获得10
18秒前
赘婿应助fahbfafajk采纳,获得10
20秒前
20秒前
李健应助韩妙采纳,获得10
21秒前
22秒前
24秒前
sun发布了新的文献求助10
25秒前
26秒前
26秒前
今天任务完成了吗完成签到,获得积分10
26秒前
XIEQ发布了新的文献求助10
26秒前
27秒前
29秒前
懒鲸鱼发布了新的文献求助10
30秒前
明兰发布了新的文献求助10
30秒前
yyanxuemin919发布了新的文献求助10
31秒前
31秒前
Andy发布了新的文献求助10
32秒前
33秒前
机智的雁荷完成签到 ,获得积分10
33秒前
jam完成签到,获得积分10
36秒前
希望天下0贩的0应助XIEQ采纳,获得10
38秒前
HAOHAO发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432