Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子完成签到,获得积分10
1秒前
SciGPT应助day_on采纳,获得10
1秒前
1秒前
小虫发布了新的文献求助10
2秒前
hb完成签到,获得积分10
2秒前
打打应助ASA采纳,获得10
2秒前
DrSong完成签到,获得积分10
2秒前
2秒前
eric完成签到 ,获得积分0
3秒前
3秒前
炙热的醉易完成签到,获得积分10
3秒前
4秒前
jjjjjjjj完成签到,获得积分0
5秒前
水月完成签到,获得积分10
5秒前
mudiboyang完成签到,获得积分10
6秒前
heavenhorse完成签到,获得积分10
6秒前
南宫清涟完成签到,获得积分10
6秒前
现代惜蕊完成签到,获得积分10
7秒前
LegendThree完成签到,获得积分10
7秒前
小雨o0完成签到,获得积分20
7秒前
钙离子完成签到,获得积分10
7秒前
suya发布了新的文献求助10
7秒前
精明的秋发布了新的文献求助10
8秒前
ASA完成签到,获得积分10
8秒前
anheshu完成签到,获得积分10
8秒前
wxt完成签到 ,获得积分10
8秒前
爱情哈尔完成签到,获得积分10
8秒前
迎南完成签到,获得积分10
9秒前
9秒前
Glufo发布了新的文献求助10
10秒前
景行发布了新的文献求助10
10秒前
科研通AI2S应助zhouyane采纳,获得10
10秒前
monkey完成签到,获得积分10
10秒前
10秒前
冰冷天蝎座完成签到,获得积分10
11秒前
lxb完成签到,获得积分10
11秒前
笨笨乘风完成签到,获得积分10
11秒前
段段完成签到,获得积分10
11秒前
无奈的浩宇完成签到,获得积分10
11秒前
天天下文献完成签到 ,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770641
求助须知:如何正确求助?哪些是违规求助? 3315633
关于积分的说明 10177213
捐赠科研通 3030756
什么是DOI,文献DOI怎么找? 1663063
邀请新用户注册赠送积分活动 795273
科研通“疑难数据库(出版商)”最低求助积分说明 756718