亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
9秒前
11秒前
20秒前
24秒前
畅快甜瓜发布了新的文献求助10
24秒前
IIII发布了新的文献求助10
27秒前
28秒前
Muhammad发布了新的文献求助10
28秒前
29秒前
34秒前
41秒前
43秒前
酷波er应助科研通管家采纳,获得10
48秒前
49秒前
49秒前
Willow完成签到,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
Criminology34应助自觉的电脑采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6.1应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
zxg完成签到 ,获得积分10
1分钟前
寒冷念文发布了新的文献求助10
1分钟前
2分钟前
科研通AI6.1应助努力采纳,获得10
2分钟前
2分钟前
2分钟前
Orange应助寒冷念文采纳,获得10
2分钟前
2分钟前
Muhammad发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542