清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity完成签到,获得积分0
7秒前
幸福大白发布了新的文献求助10
33秒前
胡可完成签到 ,获得积分10
35秒前
WangVera完成签到,获得积分10
44秒前
PeterLin完成签到,获得积分10
48秒前
Vivian完成签到,获得积分10
53秒前
大模型应助ping采纳,获得10
1分钟前
wssamuel完成签到 ,获得积分10
1分钟前
1分钟前
幸福大白发布了新的文献求助10
1分钟前
XxxxxxENT发布了新的文献求助10
1分钟前
润润润完成签到 ,获得积分10
1分钟前
共享精神应助勤恳傲旋采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
勤恳傲旋发布了新的文献求助10
1分钟前
2分钟前
3分钟前
斯文败类应助勤恳傲旋采纳,获得10
3分钟前
3分钟前
义气的书雁完成签到,获得积分10
3分钟前
3分钟前
ping发布了新的文献求助10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
勤恳傲旋发布了新的文献求助10
3分钟前
hzh完成签到 ,获得积分10
3分钟前
3分钟前
fabius0351完成签到 ,获得积分10
4分钟前
ping完成签到,获得积分10
4分钟前
Spring完成签到,获得积分10
4分钟前
AmyHu完成签到,获得积分10
4分钟前
MGraceLi_sci完成签到,获得积分10
5分钟前
科研通AI5应助勤恳傲旋采纳,获得10
5分钟前
5分钟前
勤恳傲旋发布了新的文献求助10
5分钟前
一八四完成签到,获得积分10
5分钟前
方白秋完成签到,获得积分10
6分钟前
紫熊发布了新的文献求助10
6分钟前
Z1070741749完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569504
求助须知:如何正确求助?哪些是违规求助? 3991585
关于积分的说明 12355974
捐赠科研通 3663939
什么是DOI,文献DOI怎么找? 2019154
邀请新用户注册赠送积分活动 1053631
科研通“疑难数据库(出版商)”最低求助积分说明 941159