Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
ss发布了新的文献求助30
4秒前
WangPeidi发布了新的文献求助30
4秒前
4秒前
共享精神应助小蒋采纳,获得10
5秒前
5秒前
骏骏发布了新的文献求助30
5秒前
JM发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
8秒前
安安安发布了新的文献求助10
9秒前
9秒前
豆芽菜完成签到,获得积分10
10秒前
11秒前
徐志豪发布了新的文献求助10
11秒前
111111发布了新的文献求助10
11秒前
Vater发布了新的文献求助10
12秒前
吃个馍馍完成签到,获得积分10
14秒前
14秒前
李勤_秦礼发布了新的文献求助10
14秒前
lxdfrank发布了新的文献求助10
15秒前
茶茶完成签到,获得积分10
15秒前
细心的凝芙完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
顺利寻真完成签到,获得积分10
18秒前
我是老大应助WangPeidi采纳,获得10
19秒前
小二郎应助无限的绮晴采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
小蒋发布了新的文献求助10
20秒前
彭于晏应助红色小矮人采纳,获得10
21秒前
22秒前
阅遍SCI完成签到,获得积分0
22秒前
小马甲应助吃个馍馍采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031