亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dispersed differential hunger games search for high dimensional gene data feature selection

水准点(测量) 计算机科学 特征选择 一套 维数之咒 差异进化 数据挖掘 选择(遗传算法) 多样性(控制论) 机器学习 领域(数学) 特征(语言学) 人工智能 数学 历史 哲学 语言学 考古 纯数学 地理 大地测量学
作者
Zhiqing Chen,Li Xinxian,Ruifeng Guo,Lejun Zhang,Sami Dhahbi,Sami Bourouis,Lei Liu,Xianchuan Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107197-107197 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107197
摘要

The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
21秒前
科研通AI6.1应助993494543采纳,获得10
32秒前
37秒前
优美的莹芝完成签到,获得积分10
51秒前
科研通AI2S应助信陵君无忌采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
古古怪界丶黑大帅完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
993494543发布了新的文献求助10
2分钟前
993494543完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
爆米花应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
eeevaxxx完成签到 ,获得积分10
3分钟前
852应助安青兰采纳,获得10
4分钟前
4分钟前
4分钟前
安青兰发布了新的文献求助10
4分钟前
4分钟前
Feng完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
lanxinyue发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
mkeale完成签到,获得积分10
5分钟前
5分钟前
5分钟前
花卷卷发布了新的文献求助10
5分钟前
5分钟前
玉荣完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134