亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Network Security Situation Prediction Based on TCAN-BiGRU Optimized by SSA and IQPSO

计算机科学 粒子群优化 特征(语言学) 子序列 数据挖掘 人工智能 模式识别(心理学) 算法 数学 数学分析 语言学 哲学 有界函数
作者
Junfeng Sun,Chenghai Li,Yafei Song,Peng Ni,Jian Wang
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:47 (1): 993-1021
标识
DOI:10.32604/csse.2023.039215
摘要

The accuracy of historical situation values is required for traditional network security situation prediction (NSSP). There are discrepancies in the correlation and weighting of the various network security elements. To solve these problems, a combined prediction model based on the temporal convolution attention network (TCAN) and bi-directional gate recurrent unit (BiGRU) network is proposed, which is optimized by singular spectrum analysis (SSA) and improved quantum particle swarm optimization algorithm (IQPSO). This model first decomposes and reconstructs network security situation data into a series of subsequences by SSA to remove the noise from the data. Furthermore, a prediction model of TCAN-BiGRU is established respectively for each subsequence. TCAN uses the TCN to extract features from the network security situation data and the improved channel attention mechanism (CAM) to extract important feature information from TCN. BiGRU learns the before-after status of situation data to extract more feature information from sequences for prediction. Besides, IQPSO is proposed to optimize the hyperparameters of BiGRU. Finally, the prediction results of the subsequence are superimposed to obtain the final predicted value. On the one hand, IQPSO compares with other optimization algorithms in the experiment, whose performance can find the optimum value of the benchmark function many times, showing that IQPSO performs better. On the other hand, the established prediction model compares with the traditional prediction methods through the simulation experiment, whose coefficient of determination is up to 0.999 on both sets, indicating that the combined prediction model established has higher prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
华师发布了新的文献求助10
2分钟前
所所应助华师采纳,获得10
3分钟前
3分钟前
舒适仰发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
舒适的方盒完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
月哥是我啊哈完成签到,获得积分10
5分钟前
5分钟前
wanci应助禾斗石开采纳,获得10
5分钟前
许三问完成签到 ,获得积分0
6分钟前
zxq1996完成签到 ,获得积分10
7分钟前
科研搬运工完成签到,获得积分10
8分钟前
8分钟前
禾斗石开关注了科研通微信公众号
8分钟前
StayGolDay发布了新的文献求助10
8分钟前
8分钟前
YX发布了新的文献求助10
9分钟前
9分钟前
禾斗石开发布了新的文献求助10
9分钟前
9分钟前
Jarvis Lin应助舒适仰采纳,获得10
9分钟前
优美的冰巧完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
10分钟前
不羁之魂发布了新的文献求助10
10分钟前
11分钟前
小二郎应助不羁之魂采纳,获得10
11分钟前
StayGolDay发布了新的文献求助10
11分钟前
11分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311188
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516748
捐赠科研通 2619300
什么是DOI,文献DOI怎么找? 1432193
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810