平方根
估计员
数学
基质(化学分析)
组合数学
符号
秩(图论)
离散数学
应用数学
统计
算术
几何学
材料科学
复合材料
标识
DOI:10.1109/tit.2023.3284341
摘要
This paper is concerned with noisy matrix completion-the problem of recovering a low-rank matrix from partial and noisy entries.Under uniform sampling and incoherence assumptions, we prove that a tuning-free square-root matrix completion estimator (square-root MC) achieves optimal statistical performance for solving the noisy matrix completion problem.Similar to the square-root Lasso estimator in high-dimensional linear regression, square-root MC does not rely on the knowledge of the size of the noise.While solving square-root MC is a convex program, our statistical analysis of square-root MC hinges on its intimate connections to a nonconvex rank-constrained estimator.
科研通智能强力驱动
Strongly Powered by AbleSci AI