A cost-effective, machine learning-based new unified risk-classification score (NU-CATS) for patients with endometrial cancer

医学 子宫内膜癌 内科学 肿瘤科 癌症 转移
作者
Shangen Zheng,Yilin Wu,Eric D. Donnelly,Jonathan B. Strauss
出处
期刊:Gynecologic Oncology [Elsevier]
卷期号:175: 97-106 被引量:1
标识
DOI:10.1016/j.ygyno.2023.06.008
摘要

Introduction Treatment for endometrial cancer (EC) is increasingly guided by molecular risk classifications. Here, we aimed at using machine learning (ML) to incorporate clinical and molecular risk factors to optimize risk assessment. Methods The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (n = 596), Memorial Sloan Kettering-Metastatic Events and Tropisms (n = 1315) and the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (n = 4561) datasets were used to identify genetic alterations and clinicopathological features. Software packages including Keras, Pytorch, and Scikit Learn were tested to build artificial neural networks (ANNs) with a binary output as either intra-abdominal metastatic progression (‘1’) vs. non-metastatic (‘0’). Results Black patients with EC have worse prognosis than White patients, adjusting for TP53 or POLE mutation status. Over 75% of Black patients carry TP53 mutations as compared to approximately 40% of White patients. Older age is associated with an increasing likelihood of TP53 mutation, high risk histology, and distant metastasis. For patients above age 70, 91% of Black and 60% of White EC patients carry TP53 mutations. A ML-based New Unified classifiCATion Score (NU-CATS) that incorporates age, race, histology, mismatch repair status, and TP53 mutation status showed 75% accuracy in prognosticating intra-abdominal progression. A higher NU-CATS is associated with an increasing risk of having positive pelvic or para-aortic lymph nodes and distant metastasis. NU-CATS was shown to outperform Leiden/TransPORTEC model for estimating risk of FIGO Stage I/II disease progression and survival in Black EC patients. Conclusion The NU-CATS, a ML-based, cost-effective algorithm, incorporates diverse clinicopathologic and molecular variables of EC and yields superior prognostication of the risk of nodal involvement, distant metastasis, disease progression, and overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jjj发布了新的文献求助10
1秒前
Zer完成签到,获得积分10
2秒前
QL发布了新的文献求助10
2秒前
3秒前
ice发布了新的文献求助10
4秒前
无限冰香发布了新的文献求助10
4秒前
彩色白卉发布了新的文献求助10
6秒前
可爱的小桃完成签到,获得积分10
7秒前
LO7pM2发布了新的文献求助30
8秒前
小二郎应助77777采纳,获得10
8秒前
11秒前
13秒前
小大巫完成签到,获得积分10
14秒前
完美世界应助星辰亦会累采纳,获得10
14秒前
VANGOGH完成签到 ,获得积分20
15秒前
15秒前
15秒前
ice完成签到,获得积分10
17秒前
额额发布了新的文献求助10
17秒前
FULAWEN发布了新的文献求助10
18秒前
19秒前
无限冰香完成签到,获得积分10
19秒前
eryday0发布了新的文献求助30
19秒前
20秒前
脆脆完成签到,获得积分10
20秒前
所所应助zxzxzxzxzx采纳,获得10
21秒前
科研通AI2S应助夏樱桐采纳,获得10
21秒前
世界尽头完成签到,获得积分0
22秒前
万能图书馆应助小叔采纳,获得10
22秒前
科研通AI2S应助研友_nxGOmL采纳,获得10
23秒前
冷静的傲易完成签到,获得积分20
25秒前
丘比特应助耶嘿采纳,获得10
25秒前
奶茶发布了新的文献求助10
25秒前
上官若男应助世界尽头采纳,获得10
25秒前
27秒前
28秒前
29秒前
Ava应助寻上采纳,获得10
30秒前
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244474
求助须知:如何正确求助?哪些是违规求助? 2888125
关于积分的说明 8251494
捐赠科研通 2556555
什么是DOI,文献DOI怎么找? 1385063
科研通“疑难数据库(出版商)”最低求助积分说明 649975
邀请新用户注册赠送积分活动 626072