A cost-effective, machine learning-based new unified risk-classification score (NU-CATS) for patients with endometrial cancer

医学 子宫内膜癌 内科学 肿瘤科 癌症 转移
作者
Shangen Zheng,Yilin Wu,Eric D. Donnelly,Jonathan B. Strauss
出处
期刊:Gynecologic Oncology [Elsevier BV]
卷期号:175: 97-106 被引量:1
标识
DOI:10.1016/j.ygyno.2023.06.008
摘要

Introduction Treatment for endometrial cancer (EC) is increasingly guided by molecular risk classifications. Here, we aimed at using machine learning (ML) to incorporate clinical and molecular risk factors to optimize risk assessment. Methods The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (n = 596), Memorial Sloan Kettering-Metastatic Events and Tropisms (n = 1315) and the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (n = 4561) datasets were used to identify genetic alterations and clinicopathological features. Software packages including Keras, Pytorch, and Scikit Learn were tested to build artificial neural networks (ANNs) with a binary output as either intra-abdominal metastatic progression (‘1’) vs. non-metastatic (‘0’). Results Black patients with EC have worse prognosis than White patients, adjusting for TP53 or POLE mutation status. Over 75% of Black patients carry TP53 mutations as compared to approximately 40% of White patients. Older age is associated with an increasing likelihood of TP53 mutation, high risk histology, and distant metastasis. For patients above age 70, 91% of Black and 60% of White EC patients carry TP53 mutations. A ML-based New Unified classifiCATion Score (NU-CATS) that incorporates age, race, histology, mismatch repair status, and TP53 mutation status showed 75% accuracy in prognosticating intra-abdominal progression. A higher NU-CATS is associated with an increasing risk of having positive pelvic or para-aortic lymph nodes and distant metastasis. NU-CATS was shown to outperform Leiden/TransPORTEC model for estimating risk of FIGO Stage I/II disease progression and survival in Black EC patients. Conclusion The NU-CATS, a ML-based, cost-effective algorithm, incorporates diverse clinicopathologic and molecular variables of EC and yields superior prognostication of the risk of nodal involvement, distant metastasis, disease progression, and overall survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Liufgui应助do0采纳,获得10
3秒前
细腻灯泡发布了新的文献求助10
4秒前
顺利毕业发布了新的文献求助10
4秒前
5秒前
Jasper应助XiaodongWang采纳,获得10
6秒前
李健应助XiaodongWang采纳,获得10
6秒前
英俊的铭应助XiaodongWang采纳,获得10
6秒前
充电宝应助XiaodongWang采纳,获得10
6秒前
CipherSage应助XiaodongWang采纳,获得10
6秒前
7秒前
@A发布了新的文献求助10
7秒前
大兵发布了新的文献求助10
8秒前
8秒前
Luffa完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
Egoist完成签到,获得积分10
10秒前
10秒前
自然完成签到,获得积分20
11秒前
赘婿应助花雨落123采纳,获得10
11秒前
12秒前
12秒前
乐观的阿伟完成签到,获得积分10
13秒前
思维隋发布了新的文献求助10
14秒前
娟姐完成签到,获得积分10
14秒前
JamesPei应助大兵采纳,获得10
14秒前
wjs完成签到,获得积分10
15秒前
15秒前
wang发布了新的文献求助10
15秒前
最爱地瓜和虾滑完成签到 ,获得积分10
16秒前
小马甲应助小帅采纳,获得10
17秒前
科目三应助白河采纳,获得10
17秒前
18秒前
酷酷的笔记本完成签到,获得积分10
19秒前
舒服的寻琴完成签到,获得积分20
20秒前
pluto应助yizhi猫采纳,获得10
21秒前
沉辰发布了新的文献求助10
21秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075