SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information

增强子 计算机科学 人工智能 联营 深度学习 模式识别(心理学) 特征(语言学) 嵌入 特征提取 计算生物学 数据挖掘 基因 生物 遗传学 转录因子 哲学 语言学
作者
Hanyu Luo,Ye Li,Liu Huan,Pingjian Ding,Ying Yu,Lingyun Luo
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:105: 107905-107905 被引量:2
标识
DOI:10.1016/j.compbiolchem.2023.107905
摘要

Super-enhancers are large domains on the genome where multiple short typical enhancers within a specific genomic distance are stitched together. Typically, they are cell type-specific and responsible for defining cell identity and regulating gene transcription. Numerous studies have demonstrated that super-enhancers are enriched for trait-associated variants, and mutations in super-enhancers are possibly related to known diseases. Recently, several machine learning-based methods have been used to distinguish super-enhancers from typical enhancers by using high-throughput data from various experimental methods. The acquisition of such experimental data is usually costly and time-consuming. In this paper, we innovatively proposed SENet, a groundbreaking method based on a deep neural network model, for discriminating between the two categories solely utilizing sequence information. SENet employs dna2vec feature embedding, convolution for local feature extraction, attention pooling for refined feature retention, and Transformer for contextual information extraction. Experiments demonstrate that SENet outperforms all current state-of-the-art computational methods and shows satisfactory performance in cross-species validation. Our method pioneers the distinction between super-enhancers and typical ones using only sequence information. The source code and datasets are stored in https://github.com/lhy0322/SENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布鲁爱思完成签到,获得积分10
1秒前
姜冬菇发布了新的文献求助10
1秒前
zuochao完成签到,获得积分10
2秒前
pjxxx完成签到 ,获得积分10
2秒前
DDDuan发布了新的文献求助10
3秒前
苹果小玉发布了新的文献求助10
4秒前
4秒前
5秒前
天真友易发布了新的文献求助10
5秒前
5秒前
6秒前
无私的紊完成签到,获得积分10
7秒前
zzzzzzy发布了新的文献求助10
8秒前
9秒前
青柠发布了新的文献求助10
9秒前
无花果应助666采纳,获得10
9秒前
10秒前
雨水发布了新的文献求助10
10秒前
高大绝义发布了新的文献求助10
11秒前
打打应助会武功的阿吉采纳,获得10
11秒前
姜冬菇完成签到,获得积分10
12秒前
咕咕完成签到,获得积分10
12秒前
12秒前
脑洞疼应助mianmianyu采纳,获得10
12秒前
彭于晏应助Z先生采纳,获得10
13秒前
一程发布了新的文献求助10
13秒前
13秒前
闪闪谷槐发布了新的文献求助10
13秒前
守墓人完成签到 ,获得积分10
14秒前
核桃应助独特的平安采纳,获得10
14秒前
CodeCraft应助独特的平安采纳,获得10
14秒前
大个应助cr7采纳,获得10
15秒前
Hedy发布了新的文献求助10
16秒前
轻松盼雁完成签到,获得积分10
17秒前
shea发布了新的文献求助10
17秒前
18秒前
AYQ发布了新的文献求助10
21秒前
天天快乐应助夏冉采纳,获得10
22秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350