Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning

城市固体废物 过程(计算) 环境友好型 工艺工程 废物管理 tar(计算) 环境科学 生物能源 工程类 计算机科学 生物燃料 生态学 生物 程序设计语言 操作系统
作者
Yadong Yang,Hossein Shahbeik,Alireza Shafizadeh,Shahin Rafiee,Akram Hafezi,Xinyi Du,Junting Pan,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Energy [Elsevier BV]
卷期号:278: 127881-127881 被引量:18
标识
DOI:10.1016/j.energy.2023.127881
摘要

The gasification process can treat and valorize municipal solid waste (MSW) in an environmentally and economically friendly way. Using this process, MSW can be safely disposed of and sustainably converted into bioenergy as part of regional planning. Experimental laboratory data is a key component in designing, optimizing, controlling, and scaling up MSW gasifiers. However, most researchers lack the resources and time to conduct experiments. Machine learning (ML) technology can resolve this issue by detecting patterns and hidden information in published data. Hence, the present study aims to construct an inclusive ML model to predict and understand the MSW gasification process. The objective is to establish a consistent and homogeneous database containing MSW sources under different gasification conditions, followed by an analysis of the database using statistical methods. Three ML models are used to predict the distribution of syngas, char, and tar and the quality of syngas in MSW gasification using feedstock characteristics and gasification parameters. When a gradient boost regressor is used to model the process, the prediction accuracy is highest (R2 > 0.926, RMSE <6.318, and RRMSE <0.304). SHAP analysis is successfully used to understand the significance and contribution of descriptors on targets in the modeling process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈什么烨发布了新的文献求助10
2秒前
2秒前
3秒前
情怀应助嘉嘉琦采纳,获得10
3秒前
Ava应助WSGQT采纳,获得10
4秒前
Jiang发布了新的文献求助10
5秒前
超帅听枫完成签到,获得积分20
5秒前
SYLH应助poli采纳,获得10
6秒前
生菜完成签到,获得积分10
6秒前
bxxxxx应助FFF采纳,获得30
6秒前
senhoo完成签到,获得积分10
7秒前
7秒前
JamesPei应助Ana采纳,获得10
7秒前
superbada发布了新的文献求助30
7秒前
希望天下0贩的0应助雪碧采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
坦率的匪应助科研通管家采纳,获得10
11秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
pcr163应助科研通管家采纳,获得80
11秒前
大模型应助科研通管家采纳,获得30
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
科研通AI5应助舒服的乐曲采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
坦率的匪应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
坦率的匪应助科研通管家采纳,获得10
11秒前
11秒前
quhayley应助科研通管家采纳,获得10
11秒前
要减肥岩应助科研通管家采纳,获得10
12秒前
彭于彦祖应助培爷采纳,获得30
12秒前
Mininine完成签到,获得积分10
12秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
quhayley应助科研通管家采纳,获得10
12秒前
LUJyyyy完成签到,获得积分10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021