肺表面活性物质
黄原胶
复合数
化学工程
纳米-
碳酸盐
机制(生物学)
化学
多孔性
多孔介质
微流控
材料科学
纳米技术
有机化学
复合材料
流变学
哲学
工程类
认识论
作者
Aref Nafisifar,Abbas Khaksar Manshad,Seyed Reza Shadizadeh
出处
期刊:Fuel
[Elsevier]
日期:2023-09-01
卷期号:348: 128510-128510
标识
DOI:10.1016/j.fuel.2023.128510
摘要
Rising global energy demand and decrease in world fossil fuels reserves draw attention toward production from trapped oil in the reservoirs. CEOR methods are proved and efficient methods which can be applied for increased oil recovery. In this research, the EOR potential of a novel nanocomposite and a developed surfactant was evaluated in the presence of various ions and the production enhancement mechanisms were studied using glass micromodel. Primary, the synergistic effect of the nanocomposite and the natural surfactant on Interfacial tension (IFT) reduction and wettability alteration was studied. After quantitative analysis and investigation of the various mechanisms, it was understood that the presence of the nanocomposite in the surfactant solution alters the wettability of an oil-wet carbonate surface to a water-wet one. Adding nano-composite to surfactant solution can improve the wettability alteration ability of the surfactant up to 60.02%. The adsorption tests revealed that combining the nanocomposite with surfactant solution can reduce surfactant adsorption by 18.99 %. The Zeta potential test was utilized to evaluate the stability of the solution. The zeta potential of the nano/surfactant solution was equal to −28 which illustrated a stable solution. In addition, the zeta potential measurements demonstrated the wettability alteration mechanism. After investigating the properties of the nano-surfactant solutions in the presence of different ions, optimum concentrations were determined and the mechanisms of the nano-chemical EOR method were visually investigated by injecting the desired solutions into the glass micromodel. Eventually, five different injection scenarios were designed for the core flood tests to evaluate the performance of each solution in the porous medium. The achieved final recovery for PELS, PELS/NaCl, and PELS/NaCl/NC solutions were 48.05%, 55.62%, and 60.38%, respectively and the Alternative injection scenario was the best injection plan.
科研通智能强力驱动
Strongly Powered by AbleSci AI