COVID-19 Modeling: A Review

误传 数据科学 大流行 鉴定(生物学) 关系(数据库) 计算机科学 2019年冠状病毒病(COVID-19) 管理科学 人工智能 疾病 传染病(医学专业) 医学 工程类 计算机安全 植物 病理 数据库 生物
作者
Longbing Cao,Qing Liu
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:21
标识
DOI:10.1101/2022.08.22.22279022
摘要

Abstract The unprecedented and overwhelming SARS-CoV-2 virus and COVID-19 disease significantly challenged our way of life, society and the economy. Many questions emerge, a critical one being how to quantify the challenges, realities, intervention effect and influence of the pandemic. With the massive effort that has been in relation to modeling COVID-19, what COVID-19 issues have been modeled? What and how well have epidemiology, AI, data science, machine learning, deep learning, mathematics and social science characterized the COVID-19 epidemic? what are the gaps and opportunities of quantifying the pandemic? Such questions involve a wide body of knowledge and literature, which are unclear but important for present and future health crisis quantification. Here, we provide a comprehensive review of the challenges, tasks, methods, progress, gaps and opportunities in relation to modeling COVID-19 processes, data, mitigation and impact. With a research landscape of COVID-19 modeling, we further categorize, summarize, compare and discuss the related methods and the progress which has been made in modeling COVID-19 epidemic transmission processes and dynamics, case identification and tracing, infection diagnosis and medical treatments, non-pharmaceutical interventions and their effects, drug and vaccine development, psychological, economic and social influence and impact, and misinformation, etc. The review shows how modeling methods such as mathematical and statistical models, domain-driven modeling by epidemiological compartmental models, medical and biomedical analysis, AI and data science, in particular shallow and deep machine learning, simulation modeling, social science methods and hybrid modeling have addressed the COVID-19 challenges, what gaps exist and what research directions can be followed for a better future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助咦哈哈哈采纳,获得10
1秒前
满意白卉完成签到 ,获得积分10
1秒前
可爱的函函应助Lqiang采纳,获得10
1秒前
1秒前
英姑应助踏实口红采纳,获得10
3秒前
Ambrose应助Desamin采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
彭于彦祖应助科研通管家采纳,获得20
6秒前
汉堡包应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得30
7秒前
蓝豆子发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
巧克力曲奇完成签到,获得积分20
8秒前
11秒前
白白白完成签到,获得积分10
11秒前
王雨薇发布了新的文献求助30
12秒前
12秒前
光亮乘云完成签到,获得积分10
12秒前
12秒前
AAACharlie发布了新的文献求助10
13秒前
蒸馏水完成签到,获得积分10
15秒前
吳某人完成签到,获得积分10
15秒前
乐乐应助ssr01采纳,获得10
16秒前
端庄大树发布了新的文献求助30
16秒前
16秒前
飘逸的念露完成签到,获得积分10
16秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701957
求助须知:如何正确求助?哪些是违规求助? 3251981
关于积分的说明 9877418
捐赠科研通 2964034
什么是DOI,文献DOI怎么找? 1625427
邀请新用户注册赠送积分活动 770018
科研通“疑难数据库(出版商)”最低求助积分说明 742722