基因敲除
细胞凋亡
再灌注损伤
尼泊尔卢比1
ATF6
未折叠蛋白反应
化学
癌症研究
医学
生物
细胞生物学
缺血
内科学
线粒体
生物化学
线粒体生物发生
作者
Shuai Jiang,Shuai Liu,Yuxuan Hou,Chenxi Lu,Wenwen Yang,Ting Ji,Yang Yang,Zhibin Yu,Zhenxiao Jin
标识
DOI:10.1016/j.bbadis.2022.166535
摘要
Claudin-5 has recently attracted increasing attention by its potential as a novel treatment target in the early stage of heart failure. However, whether Claudin-5 produces beneficial effects on myocardial ischemia and reperfusion (IR) injury has not been elucidated yet. In this study, we identified reduced levels of Claudin-5 in the hearts of mice subjected to acute myocardial IR injury and murine HL-1 cardiomyocytes subjected to hypoxia and reoxygenation (HR). We then constructed cardiac-specific Cldn5-overexpressing mice using an adeno-associated virus (AAV9) vector and demonstrated that Cldn5 overexpression ameliorated cardiac dysfunction and myocardial damage in mice subjected to myocardial IR injury. Moreover, Cldn5 overexpression attenuated myocardial oxidative stress (DHE and protein levels of Nrf2, HO-1, and NQO1), inflammatory response (levels of MPO, F4/80, Ly6C, and circulating inflammatory cells), mitochondrial dysfunction (protein levels of PGC-1α, NRF1, and TFAM), endoplasmic reticulum stress (protein levels of GRP78, ATF6, and CHOP and p-PERK), energy metabolism disorder (p-AMPK and ACC), and apoptosis (TUNEL assay and protein levels of Bax and Bcl2) in mice subjected to myocardial IR. Next, we generated Cldn5 knockdown cells by lentiviral shRNA and observed that Cldn5 knockdown inhibited cell viability and affected the expression or activation of these IR-related signalings in HL-1 cardiomyocytes subjected to HR. Mechanistically, SIRT1 was proved to be involved in regulating the expression of Claudin-5 by co-immunoprecipitation analysis and Sirt1 knockdown experiments. Our data demonstrated that targeting Claudin-5 may represent a promising approach for preventing and treating acute myocardial IR injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI