Bladder cancer prognosis using deep neural networks and histopathology images

组织病理学 膀胱癌 医学 癌症 置信区间 卷积神经网络 肿瘤科 内科学 人工智能 病理 计算机科学
作者
Wayner Barrios,Behnaz Abdolahi,Manu Goyal,Qingyuan Song,Matthew A. Suriawinata,Ryland Richards,Bing Ren,Alan R. Schned,John D. Seigne,Margaret R. Karagas,Saeed Hassanpour
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:13: 100135-100135 被引量:7
标识
DOI:10.1016/j.jpi.2022.100135
摘要

Recent studies indicate that bladder cancer is among the top 10 most common cancers in the world (Saginala et al. 2022). Bladder cancer frequently reoccurs, and prognostic judgments may vary among clinicians. As a favorable prognosis may help to inform less aggressive treatment plans, classification of histopathology slides is essential for the accurate prognosis and effective treatment of bladder cancer patients. Developing automated and accurate histopathology image analysis methods can help pathologists determine the prognosis of patients with bladder cancer.In this study, we introduced Bladder4Net, a deep learning pipeline, to classify whole-slide histopathology images of bladder cancer into two classes: low-risk (combination of PUNLMP and low-grade tumors) and high-risk (combination of high-grade and invasive tumors). This pipeline consists of four convolutional neural network (CNN)-based classifiers to address the difficulties of identifying PUNLMP and invasive classes. We evaluated our pipeline on 182 independent whole-slide images from the New Hampshire Bladder Cancer Study (NHBCS) (Karagas et al., 1998; Sverrisson et al., 2014; Sverrisson et al., 2014) collected from 1994 to 2004 and 378 external digitized slides from The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/tcga).The weighted average F1-score of our approach was 0.91 (95% confidence interval (CI): 0.86-0.94) on the NHBCS dataset and 0.99 (95% CI: 0.97-1.00) on the TCGA dataset. Additionally, we computed Kaplan-Meier survival curves for patients who were predicted as high risk versus those predicted as low risk. For the NHBCS test set, patients predicted as high risk had worse overall survival than those predicted as low risk, with a log-rank p-value of 0.004.If validated through prospective trials, our model could be used in clinical settings to improve patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
醉林完成签到,获得积分10
刚刚
颜云尔发布了新的文献求助10
刚刚
时闲完成签到,获得积分10
1秒前
舒一一发布了新的文献求助10
2秒前
英俊的铭应助欢喜的之瑶采纳,获得10
2秒前
Lucas应助lingjing采纳,获得10
2秒前
3秒前
3秒前
感动傀斗完成签到,获得积分10
4秒前
彭于晏应助韩胖喵采纳,获得10
4秒前
5秒前
车车完成签到,获得积分10
6秒前
糟糕的涵柏完成签到,获得积分10
6秒前
awoe完成签到,获得积分10
6秒前
6秒前
打打应助zz采纳,获得10
6秒前
一只五条悟完成签到,获得积分10
7秒前
qq发布了新的文献求助10
8秒前
8秒前
冷静的小虾米完成签到 ,获得积分10
8秒前
lxcy0612完成签到,获得积分10
8秒前
NNUsusan发布了新的文献求助10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620