Bladder cancer prognosis using deep neural networks and histopathology images

组织病理学 膀胱癌 医学 癌症 置信区间 卷积神经网络 肿瘤科 内科学 人工智能 病理 计算机科学
作者
Wayner Barrios,Behnaz Abdolahi,Manu Goyal,Qingyuan Song,Matthew A. Suriawinata,Ryland Richards,Bing Ren,Alan R. Schned,John D. Seigne,Margaret R. Karagas,Saeed Hassanpour
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:13: 100135-100135 被引量:7
标识
DOI:10.1016/j.jpi.2022.100135
摘要

Recent studies indicate that bladder cancer is among the top 10 most common cancers in the world (Saginala et al. 2022). Bladder cancer frequently reoccurs, and prognostic judgments may vary among clinicians. As a favorable prognosis may help to inform less aggressive treatment plans, classification of histopathology slides is essential for the accurate prognosis and effective treatment of bladder cancer patients. Developing automated and accurate histopathology image analysis methods can help pathologists determine the prognosis of patients with bladder cancer.In this study, we introduced Bladder4Net, a deep learning pipeline, to classify whole-slide histopathology images of bladder cancer into two classes: low-risk (combination of PUNLMP and low-grade tumors) and high-risk (combination of high-grade and invasive tumors). This pipeline consists of four convolutional neural network (CNN)-based classifiers to address the difficulties of identifying PUNLMP and invasive classes. We evaluated our pipeline on 182 independent whole-slide images from the New Hampshire Bladder Cancer Study (NHBCS) (Karagas et al., 1998; Sverrisson et al., 2014; Sverrisson et al., 2014) collected from 1994 to 2004 and 378 external digitized slides from The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/tcga).The weighted average F1-score of our approach was 0.91 (95% confidence interval (CI): 0.86-0.94) on the NHBCS dataset and 0.99 (95% CI: 0.97-1.00) on the TCGA dataset. Additionally, we computed Kaplan-Meier survival curves for patients who were predicted as high risk versus those predicted as low risk. For the NHBCS test set, patients predicted as high risk had worse overall survival than those predicted as low risk, with a log-rank p-value of 0.004.If validated through prospective trials, our model could be used in clinical settings to improve patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是站长才怪应助Khr1stINK采纳,获得10
刚刚
1秒前
xh完成签到,获得积分10
2秒前
para_团结完成签到,获得积分10
3秒前
怡然剑成发布了新的文献求助10
3秒前
4秒前
4秒前
ipeakkka发布了新的文献求助10
4秒前
George完成签到,获得积分10
6秒前
WDK完成签到,获得积分10
6秒前
情怀应助敏感的芷采纳,获得10
6秒前
Orange应助方勇飞采纳,获得10
7秒前
FashionBoy应助烂漫驳采纳,获得10
7秒前
8秒前
9秒前
大鱼完成签到,获得积分10
9秒前
9秒前
lu完成签到,获得积分10
10秒前
Murphy完成签到 ,获得积分10
10秒前
斯文败类应助大方嵩采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得30
11秒前
hh应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得20
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得200
12秒前
orixero应助科研通管家采纳,获得10
12秒前
许多知识发布了新的文献求助10
13秒前
FashionBoy应助su采纳,获得10
13秒前
13秒前
运敬完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824