Grape Maturity Detection and Visual Pre-Positioning Based on Improved YOLOv4

稳健性(进化) 计算机科学 人工智能 目标检测 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 职位(财务) 人工神经网络 生物化学 化学 基因 财务 经济
作者
Chang Qiu,Guohang Tian,Jiawei Zhao,Qin Liu,Shangjie Xie,Kuicheng Zheng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (17): 2677-2677 被引量:11
标识
DOI:10.3390/electronics11172677
摘要

To guide grape picking robots to recognize and classify the grapes with different maturity quickly and accurately in the complex environment of the orchard, and to obtain the spatial position information of the grape clusters, an algorithm of grape maturity detection and visual pre-positioning based on improved YOLOv4 is proposed in this study. The detection algorithm uses Mobilenetv3 as the backbone feature extraction network, uses deep separable convolution instead of ordinary convolution, and uses the h-swish function instead of the swish function to reduce the number of model parameters and improve the detection speed of the model. At the same time, the SENet attention mechanism is added to the model to improve the detection accuracy, and finally the SM-YOLOv4 algorithm based on improved YOLOv4 is constructed. The experimental results of maturity detection showed that the overall average accuracy of the trained SM-YOLOv4 target detection algorithm under the verification set reached 93.52%, and the average detection time was 10.82 ms. Obtaining the spatial position of grape clusters is a grape cluster pre-positioning method based on binocular stereo vision. In the pre-positioning experiment, the maximum error was 32 mm, the mean error was 27 mm, and the mean error ratio was 3.89%. Compared with YOLOv5, YOLOv4-Tiny, Faster_R-CNN, and other target detection algorithms, which have greater advantages in accuracy and speed, have good robustness and real-time performance in the actual orchard complex environment, and can simultaneously meet the requirements of grape fruit maturity recognition accuracy and detection speed, as well as the visual pre-positioning requirements of grape picking robots in the orchard complex environment. It can reliably indicate the growth stage of grapes, so as to complete the picking of grapes at the best time, and it can guide the robot to move to the picking position, which is a prerequisite for the precise picking of grapes in the complex environment of the orchard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助鳗鱼文涛采纳,获得10
2秒前
落寞剑成完成签到 ,获得积分10
3秒前
甜美梦槐发布了新的文献求助10
3秒前
Liufgui应助DianaRang采纳,获得10
5秒前
大个应助云横秦岭家何在采纳,获得10
5秒前
8秒前
11秒前
12秒前
Michael应助快乐仙知采纳,获得20
14秒前
灵儿完成签到,获得积分10
15秒前
鳗鱼文涛发布了新的文献求助10
15秒前
研友_ngKyqn发布了新的文献求助10
15秒前
鸭屎香菜完成签到,获得积分10
15秒前
kittency完成签到 ,获得积分10
16秒前
哦哦完成签到 ,获得积分10
16秒前
18秒前
李岸完成签到,获得积分10
18秒前
SYLH应助欢hhh采纳,获得30
19秒前
晚星完成签到,获得积分10
19秒前
23秒前
RhapsodyHua发布了新的文献求助10
24秒前
25秒前
Rubby应助火星上问柳采纳,获得10
28秒前
v小飞侠101发布了新的文献求助10
29秒前
李柯莹发布了新的文献求助10
31秒前
怕黑半仙完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
40秒前
枫于林完成签到 ,获得积分10
44秒前
45秒前
lml完成签到,获得积分10
45秒前
Mia发布了新的文献求助30
47秒前
RhapsodyHua完成签到,获得积分10
48秒前
49秒前
简单白风完成签到 ,获得积分10
51秒前
老默发布了新的文献求助10
51秒前
orixero应助29采纳,获得10
53秒前
希望天下0贩的0应助yiyi采纳,获得10
55秒前
小蘑菇应助carly采纳,获得10
56秒前
56秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167