亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Grape Maturity Detection and Visual Pre-Positioning Based on Improved YOLOv4

稳健性(进化) 计算机科学 人工智能 目标检测 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 职位(财务) 人工神经网络 财务 生物化学 基因 经济 化学
作者
Chang Qiu,Guohang Tian,Jiawei Zhao,Qin Liu,Shangjie Xie,Kuicheng Zheng
出处
期刊:Electronics [MDPI AG]
卷期号:11 (17): 2677-2677 被引量:11
标识
DOI:10.3390/electronics11172677
摘要

To guide grape picking robots to recognize and classify the grapes with different maturity quickly and accurately in the complex environment of the orchard, and to obtain the spatial position information of the grape clusters, an algorithm of grape maturity detection and visual pre-positioning based on improved YOLOv4 is proposed in this study. The detection algorithm uses Mobilenetv3 as the backbone feature extraction network, uses deep separable convolution instead of ordinary convolution, and uses the h-swish function instead of the swish function to reduce the number of model parameters and improve the detection speed of the model. At the same time, the SENet attention mechanism is added to the model to improve the detection accuracy, and finally the SM-YOLOv4 algorithm based on improved YOLOv4 is constructed. The experimental results of maturity detection showed that the overall average accuracy of the trained SM-YOLOv4 target detection algorithm under the verification set reached 93.52%, and the average detection time was 10.82 ms. Obtaining the spatial position of grape clusters is a grape cluster pre-positioning method based on binocular stereo vision. In the pre-positioning experiment, the maximum error was 32 mm, the mean error was 27 mm, and the mean error ratio was 3.89%. Compared with YOLOv5, YOLOv4-Tiny, Faster_R-CNN, and other target detection algorithms, which have greater advantages in accuracy and speed, have good robustness and real-time performance in the actual orchard complex environment, and can simultaneously meet the requirements of grape fruit maturity recognition accuracy and detection speed, as well as the visual pre-positioning requirements of grape picking robots in the orchard complex environment. It can reliably indicate the growth stage of grapes, so as to complete the picking of grapes at the best time, and it can guide the robot to move to the picking position, which is a prerequisite for the precise picking of grapes in the complex environment of the orchard.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luis应助科研通管家采纳,获得30
2秒前
gszy1975完成签到,获得积分10
14秒前
互助举报Summer2022求助涉嫌违规
17秒前
Rebeccaiscute完成签到 ,获得积分10
59秒前
Iron_five完成签到 ,获得积分0
1分钟前
1分钟前
nikg发布了新的文献求助10
1分钟前
诗梦完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
青葱鱼块完成签到 ,获得积分10
2分钟前
2分钟前
以七完成签到 ,获得积分10
2分钟前
sdkabdrxt完成签到,获得积分10
2分钟前
3分钟前
krajicek发布了新的文献求助10
3分钟前
3分钟前
闪闪沂完成签到 ,获得积分10
4分钟前
科研通AI6.2应助刻苦不弱采纳,获得10
4分钟前
4分钟前
小神仙完成签到 ,获得积分10
4分钟前
4分钟前
Isaac完成签到 ,获得积分10
4分钟前
刻苦不弱发布了新的文献求助10
4分钟前
5分钟前
毛耳朵发布了新的文献求助10
5分钟前
yzy完成签到 ,获得积分10
5分钟前
互助应助毛耳朵采纳,获得10
5分钟前
乐乐应助毛耳朵采纳,获得10
5分钟前
NattyPoe发布了新的文献求助10
5分钟前
忧心的士萧完成签到,获得积分10
5分钟前
今后应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
夏天无完成签到 ,获得积分10
6分钟前
Cloud发布了新的文献求助10
6分钟前
6分钟前
gkhsdvkb发布了新的文献求助10
6分钟前
yin景景完成签到,获得积分10
6分钟前
科研通AI6.2应助开霁采纳,获得10
7分钟前
李健的小迷弟应助颖颖采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870851
求助须知:如何正确求助?哪些是违规求助? 6468547
关于积分的说明 15665078
捐赠科研通 4987083
什么是DOI,文献DOI怎么找? 2689159
邀请新用户注册赠送积分活动 1631508
关于科研通互助平台的介绍 1589536