Grape Maturity Detection and Visual Pre-Positioning Based on Improved YOLOv4

稳健性(进化) 计算机科学 人工智能 目标检测 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 职位(财务) 人工神经网络 财务 生物化学 基因 经济 化学
作者
Chang Qiu,Guohang Tian,Jiawei Zhao,Qin Liu,Shangjie Xie,Kuicheng Zheng
出处
期刊:Electronics [MDPI AG]
卷期号:11 (17): 2677-2677 被引量:11
标识
DOI:10.3390/electronics11172677
摘要

To guide grape picking robots to recognize and classify the grapes with different maturity quickly and accurately in the complex environment of the orchard, and to obtain the spatial position information of the grape clusters, an algorithm of grape maturity detection and visual pre-positioning based on improved YOLOv4 is proposed in this study. The detection algorithm uses Mobilenetv3 as the backbone feature extraction network, uses deep separable convolution instead of ordinary convolution, and uses the h-swish function instead of the swish function to reduce the number of model parameters and improve the detection speed of the model. At the same time, the SENet attention mechanism is added to the model to improve the detection accuracy, and finally the SM-YOLOv4 algorithm based on improved YOLOv4 is constructed. The experimental results of maturity detection showed that the overall average accuracy of the trained SM-YOLOv4 target detection algorithm under the verification set reached 93.52%, and the average detection time was 10.82 ms. Obtaining the spatial position of grape clusters is a grape cluster pre-positioning method based on binocular stereo vision. In the pre-positioning experiment, the maximum error was 32 mm, the mean error was 27 mm, and the mean error ratio was 3.89%. Compared with YOLOv5, YOLOv4-Tiny, Faster_R-CNN, and other target detection algorithms, which have greater advantages in accuracy and speed, have good robustness and real-time performance in the actual orchard complex environment, and can simultaneously meet the requirements of grape fruit maturity recognition accuracy and detection speed, as well as the visual pre-positioning requirements of grape picking robots in the orchard complex environment. It can reliably indicate the growth stage of grapes, so as to complete the picking of grapes at the best time, and it can guide the robot to move to the picking position, which is a prerequisite for the precise picking of grapes in the complex environment of the orchard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
阿星捌发布了新的文献求助10
2秒前
3秒前
enterdawn完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
水云身发布了新的文献求助10
6秒前
CodeCraft应助vily采纳,获得10
6秒前
6秒前
6秒前
乐乐应助LiangQixin采纳,获得10
6秒前
7秒前
7秒前
7秒前
刘桑桑发布了新的文献求助10
8秒前
8秒前
遇阳完成签到,获得积分10
8秒前
个性的宝贝完成签到,获得积分10
9秒前
10秒前
10秒前
佳佳528发布了新的文献求助10
10秒前
maxinyu发布了新的文献求助20
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
优美紫槐发布了新的文献求助10
11秒前
WANGCHU完成签到,获得积分10
12秒前
希望天下0贩的0应助nmd323采纳,获得10
12秒前
善学以致用应助11采纳,获得10
12秒前
田様应助坦率的之卉采纳,获得10
13秒前
Owen应助水云身采纳,获得10
13秒前
13秒前
14秒前
小二郎应助疯狂大野驴采纳,获得10
14秒前
番茄绑了鸡蛋应助yangya采纳,获得100
15秒前
WANGCHU发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535