Grape Maturity Detection and Visual Pre-Positioning Based on Improved YOLOv4

稳健性(进化) 计算机科学 人工智能 目标检测 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 职位(财务) 人工神经网络 生物化学 化学 基因 财务 经济
作者
Chang Qiu,Guohang Tian,Jiawei Zhao,Qin Liu,Shangjie Xie,Kuicheng Zheng
出处
期刊:Electronics [MDPI AG]
卷期号:11 (17): 2677-2677 被引量:11
标识
DOI:10.3390/electronics11172677
摘要

To guide grape picking robots to recognize and classify the grapes with different maturity quickly and accurately in the complex environment of the orchard, and to obtain the spatial position information of the grape clusters, an algorithm of grape maturity detection and visual pre-positioning based on improved YOLOv4 is proposed in this study. The detection algorithm uses Mobilenetv3 as the backbone feature extraction network, uses deep separable convolution instead of ordinary convolution, and uses the h-swish function instead of the swish function to reduce the number of model parameters and improve the detection speed of the model. At the same time, the SENet attention mechanism is added to the model to improve the detection accuracy, and finally the SM-YOLOv4 algorithm based on improved YOLOv4 is constructed. The experimental results of maturity detection showed that the overall average accuracy of the trained SM-YOLOv4 target detection algorithm under the verification set reached 93.52%, and the average detection time was 10.82 ms. Obtaining the spatial position of grape clusters is a grape cluster pre-positioning method based on binocular stereo vision. In the pre-positioning experiment, the maximum error was 32 mm, the mean error was 27 mm, and the mean error ratio was 3.89%. Compared with YOLOv5, YOLOv4-Tiny, Faster_R-CNN, and other target detection algorithms, which have greater advantages in accuracy and speed, have good robustness and real-time performance in the actual orchard complex environment, and can simultaneously meet the requirements of grape fruit maturity recognition accuracy and detection speed, as well as the visual pre-positioning requirements of grape picking robots in the orchard complex environment. It can reliably indicate the growth stage of grapes, so as to complete the picking of grapes at the best time, and it can guide the robot to move to the picking position, which is a prerequisite for the precise picking of grapes in the complex environment of the orchard.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
星辰大海应助Wqian采纳,获得10
3秒前
3秒前
7秒前
15秒前
16秒前
科目三应助朴素的松采纳,获得10
17秒前
Jodie发布了新的文献求助10
20秒前
20秒前
Heinrich完成签到,获得积分10
21秒前
Lucas应助inter采纳,获得10
25秒前
无极微光应助科研通管家采纳,获得20
28秒前
Orange应助科研通管家采纳,获得10
28秒前
Verity应助科研通管家采纳,获得10
28秒前
28秒前
丘比特应助科研通管家采纳,获得10
28秒前
28秒前
苏新天完成签到 ,获得积分10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
Liangang应助科研通管家采纳,获得10
28秒前
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
huanger应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
小新应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
一叶知秋应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
31秒前
跳跃的翼完成签到,获得积分10
34秒前
健忘可愁完成签到,获得积分10
35秒前
跳跃的翼发布了新的文献求助10
36秒前
37秒前
无花果应助加百莉采纳,获得10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550