纳米孔
蒸发
石墨烯
材料科学
化学物理
纳米技术
分子动力学
水蒸气
纳米尺度
化学工程
化学
热力学
计算化学
有机化学
物理
工程类
作者
Wan‐Chi Lee,Anshaj Ronghe,Luis Francisco Villalobos,Shiqi Huang,Mostapha Dakhchoune,Mounir Mensi,Kuang‐Jung Hsu,K. G. Ayappa,Kumar Varoon Agrawal
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-08-24
卷期号:16 (9): 15382-15396
被引量:20
标识
DOI:10.1021/acsnano.2c07193
摘要
Enhancing the kinetics of liquid-vapor transition from nanoscale confinements is an attractive strategy for developing evaporation and separation applications. The ultimate limit of confinement for evaporation is an atom thick interface hosting angstrom-scale nanopores. Herein, using a combined experimental/computational approach, we report highly enhanced water evaporation rates when angstrom sized oxygen-functionalized graphene nanopores are placed at the liquid-vapor interface. The evaporation flux increases for the smaller nanopores with an enhancement up to 35-fold with respect to the bare liquid-vapor interface. Molecular dynamics simulations reveal that oxygen-functionalized nanopores render rapid rotational and translational dynamics to the water molecules due to a reduced and short-lived water-water hydrogen bonding. The potential of mean force (PMF) reveals that the free energy barrier for water evaporation decreases in the presence of nanopores at the atomically thin interface, which further explains the enhancement in evaporation flux. These findings can enable the development of energy-efficient technologies relying on water evaporation.
科研通智能强力驱动
Strongly Powered by AbleSci AI