导纳
控制理论(社会学)
强化学习
理论(学习稳定性)
跟踪(教育)
计算机科学
机器人
导纳参数
常量(计算机编程)
职位(财务)
机器人末端执行器
控制工程
工程类
模拟
人工智能
控制(管理)
电压
电阻抗
心理学
教育学
机器学习
电气工程
程序设计语言
财务
经济
作者
Yufei Zhou,Tianyu Liu,Jingkai Cui,Yanhui Li,Yanhui Li
标识
DOI:10.1109/rcar54675.2022.9872292
摘要
The manipulators usually need to contact with the environment when executing the tasks. Maintaining the stability of the contact force between the manipulator end-effector and the environment is very crucial. However, constant admittance control method cannot maintain the stability of dynamic force tracking if the environment is uncalibrated. A variable admittance control algorithm based on reinforcement learning is proposed, which adjusts the damping parameter of admittance control through reinforcement learning agent. Through the simulation experiments, it is found that this method can maintain the stability of dynamic contact force tracking on a sloped surface and a sine surface when an estimation error of the environmental position exists. Compared with the traditional admittance control with constant coefficients, the adaptive admittance control algorithm performs better.
科研通智能强力驱动
Strongly Powered by AbleSci AI