已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Blood-based DNA methylation profiling for the detection of ovarian cancer

DNA甲基化 医学 恶性肿瘤 卵巢癌 甲基化 肿瘤科 阶段(地层学) 亚硫酸氢盐测序 内科学 癌症 病理 DNA 生物 基因 基因表达 古生物学 遗传学
作者
Ning Li,Zhu Xin,Weiqi Nian,Yifan Li,Yangchun Sun,Guangwen Yuan,Zhenjing Zhang,Wenqing Yang,Jiayue Xu,Analyn Lizaso,Bingsi Li,Zhihong Zhang,Lingying Wu,Yu Zhang
出处
期刊:Gynecologic Oncology [Elsevier]
卷期号:167 (2): 295-305 被引量:6
标识
DOI:10.1016/j.ygyno.2022.07.008
摘要

Ovarian cancer is a fatal gynecological cancer due to the lack of effective screening strategies at early stage. This study explored the utility of DNA methylation profiling of blood samples for the detection of ovarian cancer.Targeted bisulfite sequencing was performed on tissue (n = 152) and blood samples (n = 373) obtained from healthy women, women with benign ovarian tumors, or malignant epithelial ovarian tumors. Based on the tissue-derived differentially-methylated regions, a supervised machine learning algorithm was implemented and cross-validated using the blood-derived DNA methylation profiles of the training cohort (n = 178) to predict and classify each blood sample as malignant or non-malignant. The model was further evaluated using an independent test cohort (n = 184).Comparison of the DNA methylation profiles of normal/benign and malignant tumor samples identified 1272 differentially-methylated regions, with 49.4% hypermethylated regions and 50.6% hypomethylated regions. Five-fold cross-validation of the model using the training dataset yielded an area under the curve of 0.94. Using the test dataset, the model accurately predicted non-malignancy in 96.2% of healthy women (n = 53) and 93.5% of women with benign tumors (n = 46). For patients with malignant tumors, the model accurately predicted malignancy in 44.4% of stage I-II (n = 9), 86.4% of stage III (n = 59), 100.0% of stage IV tumors (n = 6), and 81.8% of tumors with unknown stage (n = 11). Overall, the model yielded a predictive accuracy of 89.5%.Our study demonstrates the potential clinical application of blood-based DNA methylation profiling for the detection of ovarian cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助5Hepburn采纳,获得10
2秒前
木子yuchen完成签到 ,获得积分0
4秒前
Renee完成签到,获得积分10
6秒前
6秒前
7秒前
缓慢的珊珊完成签到,获得积分10
9秒前
颜南风完成签到 ,获得积分10
10秒前
Renee发布了新的文献求助100
10秒前
开心幻悲完成签到 ,获得积分10
10秒前
慕青应助yy超爱看文献采纳,获得10
15秒前
所所应助zai采纳,获得10
15秒前
斯文败类应助fat采纳,获得10
16秒前
852应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
Ava应助Aikesi采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
18秒前
zf完成签到,获得积分10
18秒前
洁净艳一发布了新的文献求助10
19秒前
20秒前
佳佳欧巴完成签到 ,获得积分10
21秒前
22秒前
22秒前
YIX应助如意果汁采纳,获得10
23秒前
yuko完成签到,获得积分10
24秒前
25秒前
姜忆霜完成签到 ,获得积分10
25秒前
25秒前
26秒前
木子李完成签到 ,获得积分10
28秒前
28秒前
zai发布了新的文献求助10
29秒前
烟花应助洁净艳一采纳,获得30
30秒前
努力的宝汁完成签到 ,获得积分10
30秒前
katrina发布了新的文献求助10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234409
求助须知:如何正确求助?哪些是违规求助? 2880758
关于积分的说明 8216901
捐赠科研通 2548341
什么是DOI,文献DOI怎么找? 1377698
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304