Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation: The case of China's cities

中国 碳纤维 经济 计量经济学 环境经济学 计算机科学 地理 算法 复合数 考古
作者
Ailun Wang,Shuo Hu,Jianglong Li
出处
期刊:Energy Economics [Elsevier BV]
卷期号:114: 106238-106238 被引量:24
标识
DOI:10.1016/j.eneco.2022.106238
摘要

Improving carbon emission efficiency is essential to address climate change. The widely used methods of modelling heterogeneity in efficiency evaluation tend to artificially classify groups based on a single variable and thus result in biased estimation. To fill this knowledge gap, this paper proposes a new method that combines machine learning and radial directional distance function (DDF) to estimate carbon emission efficiency and reduction potential, in which heterogeneity could be grouped endogenously. Furthermore, index decomposition analysis (IDA) is incorporated to explore the dynamic determinants of carbon emission reduction potential. Using China's data at city level from 2010 to 2018, we found that carbon emission efficiency considering technology heterogeneity is between 0.569–0.822. This implies an excellent emission reduction potential of around 5.9 million tons in 2018. The reduction potential is attributable to managerial failure and technology gap—the latter accounts for 46–55% of the total reduction potential. We arguably conclude that the method in this paper can capture each city's economic and environmental information more accurately than previous methods based on geographic grouping, which may underestimate the reduction potential. We anticipate the machine learning method in this paper could provide insights on clustering the technological heterogeneity and efficiency evaluation. • Machine learning provides insight on evaluating carbon emission efficiency. • Exogenous technical variables are introduced to capture heterogeneity. • Carbon emission efficiencies in China's cities range from 0.569 to 0.822. • China's carbon emission reduction potential is 5.9 million tons in 2018. • Abatement potential due to technology gap accounts for 46–55% of the total.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clover完成签到 ,获得积分10
刚刚
Lucky.完成签到 ,获得积分0
刚刚
刺猬完成签到,获得积分10
1秒前
const完成签到,获得积分10
2秒前
无辜凝天应助韭菜盒子采纳,获得10
3秒前
欣慰的舞仙完成签到,获得积分10
6秒前
6秒前
李海平完成签到 ,获得积分10
6秒前
OYY完成签到 ,获得积分10
6秒前
顺心醉蝶完成签到 ,获得积分10
9秒前
chenkj完成签到,获得积分10
12秒前
ikun完成签到,获得积分10
12秒前
EricSai完成签到,获得积分10
12秒前
caicai完成签到,获得积分10
14秒前
gg完成签到,获得积分10
15秒前
亮晶晶完成签到 ,获得积分10
16秒前
阿白完成签到,获得积分10
17秒前
羊白玉完成签到 ,获得积分10
18秒前
小墨墨完成签到 ,获得积分10
18秒前
21秒前
江蓠完成签到,获得积分10
21秒前
xionghaizi完成签到,获得积分10
21秒前
一氧化二氢完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
奔铂儿钯完成签到,获得积分10
23秒前
看文献搞科研完成签到,获得积分10
23秒前
姚姚完成签到,获得积分10
24秒前
赟yun完成签到,获得积分0
25秒前
典雅的语海完成签到,获得积分10
26秒前
平淡的寄风完成签到,获得积分10
27秒前
339564965完成签到,获得积分10
28秒前
29秒前
ccc完成签到,获得积分10
29秒前
wangbw完成签到,获得积分10
29秒前
只想顺利毕业的科研狗完成签到,获得积分10
31秒前
兜兜揣满糖完成签到 ,获得积分10
31秒前
研友_ZA2B68完成签到,获得积分0
32秒前
xueshidaheng完成签到,获得积分0
32秒前
33秒前
kyhappy_2002完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953529
求助须知:如何正确求助?哪些是违规求助? 3498988
关于积分的说明 11093588
捐赠科研通 3229618
什么是DOI,文献DOI怎么找? 1785661
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470