细胞外基质
细胞生物学
巨噬细胞极化
去细胞化
整合素
肺泡巨噬细胞
细胞外
化学
巨噬细胞
细胞
生物
生物化学
体外
作者
Yanwei Zhang,Lihua Zhu,Jinsheng Hong,Chun Chen
标识
DOI:10.1016/j.intimp.2022.109179
摘要
Macrophage polarization is modulated by many different stimuli. However, the effect of fibrotic extracellular matrix (ECM) on macrophage polarization remains unclear. In this study, a mouse model of radiation induced pulmonary fibrosis (RIPF) was established. Alveolar macrophages (AMs) were seeded on separated decellularized ECM respectively derived from early RIPF lung tissue (dECM-RIPF) and normal lung tissue (dECM-Nor), on which the polarization of AMs was examined. By way of bio-AFM analysis, a significant difference in surface roughness, but no difference in stiffness, was found between dECM-RIPF and dECM-Nor. Compared with dECM-Nor, dECM-RIPF induced a higher M1 activation and increased the levels of TNF-α, IL-6 and IL-1β, while it showed no significant effect M2 density. Nevertheless, such effects induced by dECM-RIPF could be abrogated by the integrin pan-inhibitor. Furthermore, dECM-RIPF caused integrin-dependent activation of NFκB, and NFκB inhibitor was capable of inhibiting dECM-RIPF-induced AMs proliferation and M1 activation. Animal experiments showed that NFκB inhibitor alleviated RIPF mainly through inhibiting M1 activation and down-regulating the levels of inflammatory cytokines. Our results showed that differential biophysical signaling from the fibrotic ECM of early RIPF promoted AMs polarization towards a M1 phenotype via integrin-NFκB. Inhibition of M1 activation may be an attractive approach for treating RIPF.
科研通智能强力驱动
Strongly Powered by AbleSci AI