Covalent organic framework (COF) membranes have shown enormous potential for molecular separation due to their large surface areas and pre-designable structures. However, the mild and convenient preparation of COF membranes with high crystallinity has remained a significant challenge. In this work, we reported on a facile liquid-liquid interfacial polymerization method to fabricate self-standing imine-based COF membranes with excellent crystallinity and a tunable thickness at room temperature. Polymerization was confined at the immiscible organic solvent-water interface when the monomers in the dichloromethane met the catalyst aqueous solution. This unique design concept exploited the rapid formation of COF monolayers at the liquid-liquid interface to control catalyst diffusion and structural rearrangement, achieving high crystallinity of the COF membrane. Moreover, the thickness of the self-standing COF membranes could be regulated from 50 nm to 1 μm through the flexible regulation of the growth process. Benefiting from the large surface area of the COF membranes (378 m2/g) and the intensive π-π conjugate effect between the COFs and organic dyes, the obtained COF membranes exhibited high adsorption capacities toward Chrome Black T and Rose Bengal. This work may open a viable avenue to easily and mildly prepare COF membranes for water treatment.