化学
肿瘤微环境
癌症免疫疗法
免疫疗法
癌细胞
癌症研究
免疫原性细胞死亡
免疫系统
癌症
分子生物学
生物化学
程序性细胞死亡
细胞凋亡
免疫学
生物
遗传学
作者
Yuanyuan Liu,Jiguo Xie,Xiaofei Zhao,Yueyue Zhang,Zhiyuan Zhong,Chao Deng
出处
期刊:Biomaterials Science
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:10 (19): 5731-5743
被引量:12
摘要
Indoleamine 2,3-dioxygenase (IDO), with an immunoregulatory effect related to tryptophan metabolism, has emerged as an attractive target for cancer immunotherapy. Here, a polymeric IDO inhibitor based on the poly(ethylene glycol)-b-poly(L-tyrosine-co-1-methyl-D-tryptophan) copolymer (PEG-b-P(Tyr-co-1-MT)) was developed for facile trident cancer immunotherapy. PEG-b-P(Tyr-co-1-MT) could self-assemble into nanoparticles (NPs), which were subject to enzyme degradation and capable of retarding the metabolism of L-tryptophan (TRP) to L-kynurenine (KYN) in B16F10 cancer cells. Notably, cRGD-functionalized NPs showed efficient encapsulation and an enzyme-responsive release of doxorubicin (DOX) and the BET bromodomain inhibitor JQ1. DOX in drug-loaded nanoparticles (cRGD-NPDJ) could activate immunization by inducing the discernible immunogenic cell death (ICD) of cancer cells and promoting the secretion of interferon-γ (IFN-γ), which besides activating the antitumor cellular immunity often upregulates the expression of PD-L1 and IDO to accelerate tumor progression. The encapsulated JQ1 and polymeric 1-MT in cRGD-NPDJ could reverse the expression by disrupting the binding of BET proteins with chromatin and elevating the TRP/KYN ratio. In B16F10 tumor-bearing C57BL/6 mice, cRGD-NPDJ displayed significantly increased CD8+ T cells, matured dendritic cells (mDCs), and cytokines (IFN-γ, TNF-α), as well as reduced regulatory T cells and downregulated PD-L1 expression at tumor sites, generating immune cascade reactions and a distinct improvement of the tumor microenvironment (TME), leading to significant tumor suppression and survival prolongation. The polymeric IDO inhibitor provides a facile strategy for the co-delivery of chemotherapeutics and inhibitors for efficient and safe combination cancer immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI