Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band

亥姆霍兹谐振器 声学 吸收(声学) 材料科学 亥姆霍兹自由能 声压 光圈(计算机存储器) 超材料 光学 谐振器 次声 物理 量子力学
作者
Xiaocui Yang,Fei Yang,Xinmin Shen,Enshuai Wang,Xiaonan Zhang,Cheng Shen,Wenqiang Peng
出处
期刊:Materials [MDPI AG]
卷期号:15 (17): 5938-5938 被引量:20
标识
DOI:10.3390/ma15175938
摘要

For the common difficulties of noise control in a low frequency region, an adjustable parallel Helmholtz acoustic metamaterial (APH-AM) was developed to gain broad sound absorption band by introducing multiple resonant chambers to enlarge the absorption bandwidth and tuning length of rear cavity for each chamber. Based on the coupling analysis of double resonators, the generation mechanism of broad sound absorption by adjusting the structural parameters was analyzed, which provided a foundation for the development of APH-AM with tunable chambers. Different from other optimization designs by theoretical modeling or finite element simulation, the adjustment of sound absorption performance for the proposed APH-AM could be directly conducted in transfer function tube measurement by changing the length of rear cavity for each chamber. According to optimization process of APH-AM, The target for all sound absorption coefficients above 0.9 was achieved in 602-1287 Hz with normal incidence and that for all sound absorption coefficients above 0.85 was obtained in 618-1482 Hz. The distributions of sound pressure for peak absorption frequency points were obtained in the finite element simulation, which could exhibit its sound absorption mechanism. Meanwhile, the sound absorption performance of the APH-AM with larger length of the aperture and that with smaller diameter of the aperture were discussed by finite element simulation, which could further show the potential of APH-AM in the low-frequency sound absorption. The proposed APH-AM could improve efficiency and accuracy in adjusting sound absorption performance purposefully, which would promote its practical application in low-frequency noise control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方囧发布了新的文献求助10
1秒前
香蕉觅云应助一一一采纳,获得10
1秒前
完美的四娘应助醉熏的伊采纳,获得20
1秒前
科研通AI5应助孙行行采纳,获得10
1秒前
1秒前
1秒前
NexusExplorer应助小易采纳,获得10
2秒前
2秒前
4秒前
乐观大雁发布了新的文献求助10
4秒前
4秒前
婷妮哒哒发布了新的文献求助10
4秒前
高贵的书包完成签到,获得积分10
4秒前
小果子应助天明采纳,获得10
5秒前
阳光冰颜发布了新的文献求助10
5秒前
Qiu完成签到,获得积分10
6秒前
白方明发布了新的文献求助10
7秒前
朱白发布了新的文献求助10
8秒前
aaashirz_发布了新的文献求助10
8秒前
yun发布了新的文献求助30
9秒前
ding应助心灵美诗霜采纳,获得10
11秒前
11秒前
12秒前
12秒前
注意脚下完成签到,获得积分10
13秒前
朱白完成签到,获得积分10
13秒前
13秒前
14秒前
研友_VZG7GZ应助江辰戏采纳,获得10
14秒前
大胆绮完成签到,获得积分10
14秒前
田様应助lucy4472采纳,获得10
14秒前
小蓝完成签到,获得积分10
16秒前
qwert完成签到,获得积分10
16秒前
17秒前
17秒前
万能图书馆应助天明采纳,获得30
17秒前
19秒前
善学以致用应助aaashirz_采纳,获得10
19秒前
一一一发布了新的文献求助10
20秒前
zhuxl应助小九采纳,获得10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770