Predicting glass structure by physics-informed machine learning

机器学习 集合(抽象数据类型) 人工智能 财产(哲学) 航程(航空) 统计模型 计算机科学 作文(语言) 材料科学 语言学 认识论 哲学 复合材料 程序设计语言
作者
Mikkel L. Bødker,Mathieu Bauchy,Tao Du,John C. Mauro,Morten M. Smedskjær
出处
期刊:npj computational materials [Springer Nature]
卷期号:8 (1) 被引量:13
标识
DOI:10.1038/s41524-022-00882-9
摘要

Abstract Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na 2 O–SiO 2 glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
充电宝应助123采纳,获得10
3秒前
huchen发布了新的文献求助10
3秒前
舒洛完成签到,获得积分10
4秒前
潘尼完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
1111rrrrr发布了新的文献求助10
8秒前
隐形曼青应助傲寒采纳,获得10
8秒前
huangyao完成签到 ,获得积分10
14秒前
生姜发布了新的文献求助10
14秒前
77发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
19秒前
丘比特应助ffff采纳,获得10
20秒前
结实雁山发布了新的文献求助10
20秒前
20秒前
薰硝壤应助标致的电灯胆采纳,获得20
21秒前
星辰大海应助007采纳,获得10
22秒前
24秒前
24秒前
123发布了新的文献求助10
25秒前
25秒前
xjz240221完成签到 ,获得积分10
26秒前
26秒前
26秒前
26秒前
27秒前
阿橘完成签到,获得积分10
27秒前
小jiojio的猪完成签到,获得积分10
27秒前
28秒前
傲寒发布了新的文献求助10
28秒前
huchen完成签到,获得积分20
28秒前
Owen应助wang采纳,获得10
28秒前
sue发布了新的文献求助50
29秒前
29秒前
过雨露完成签到,获得积分10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237