TXNIP公司
上睑下垂
炎症体
基因敲除
炎症
医学
再灌注损伤
缺血
药理学
免疫学
化学
细胞凋亡
内科学
硫氧还蛋白
氧化应激
生物化学
作者
Shuang Yu,Zhendong Li,Ké Li,Ke Xu
标识
DOI:10.18388/abp.2020_6095
摘要
Cerebral ischemia/reperfusion (I/R) injury is stimulated by blood restoration after ischemic stroke. Inflammatory response and inflammasome activation exerted vital functions in the development of cerebral I/R injury. miR-155-5p regulates inflammatory response in some diseases, while its role in inflammatory response and inflammasome activation of cerebral I/R injury development is unclear. Hence, the research focuses on investigating if miR-155-5p attenuate cerebral I/R injury via regulating inflammatory response and inflammasome activation and exploring the potential mechanism.The oxygen-glucose deprivation/reoxygenation (OGD/R) model and the middle cerebral artery occlusion (MCAO) model were constructed. Cell viability and cytotoxicity were reflected by CCK-8 assay and LDH activity. The inflammatory cytokines secretion was determined using ELISA assay. Brain tissue infarction was evaluated using TTC staining.miR-155-5p, Thioredoxin Interacting Protein (TXNIP) and NLR Family Pyrin Domain Containing 3 (NLRP3) were highly expressed in OGD/R model and MCAO rats. Knockdown of miR-155-5p alleviated cell injury, cell inflammation, and cell pyroptosis stimulated by OGD/R. Besides, miR-155-5p regulated TXNIP/NLRP3 pathway through modulating Dual-Specificity Phosphatase 14 (DUSP14) expression. Furthermore, knockdown of miR-155-5p improved brain tissue infarction and inhibited inflammation response and cell pyroptosis of MCAO rats.Knockdown of miR-155-5p attenuated I/R inflammation and cell pyroptosis of cerebral via modulating DUSP14/TXNIP/NLRP3 pathway. These findings may provide a promising strategy to attenuate cerebral I/R injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI