已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable Deep-Learning-Assisted Sweat Assessment via a Programmable Colorimetric Chip

人工智能 卷积神经网络 机器学习 计算机科学 深度学习 化学 算法 模式识别(心理学)
作者
Zhihao Liu,Li Jiang,Jianliang Li,Tingting Yang,Zilu Zhang,Hao Wu,Huihua Xu,Jianxin Meng,Fengyu Li
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (45): 15864-15872 被引量:5
标识
DOI:10.1021/acs.analchem.2c03927
摘要

Multianalytes and individual differences of biofluids (such as blood, urine, or sweat) pose enormous complexity and challenges to rapid, facile, high-throughput, and accurate clinical analysis or health assessment. Deep-learning (DL)-assisted image analysis has been demonstrated to be an efficient big data process which shows accurate individual identification. However, the data-driven "black boxes" of current DL algorithms are suffering from the nontransparent inner working mechanism. In this work, we designed a programmable colorimetric chip with explainable DL to approach accurate classification and quantification analysis of sweat samples. Gel (sodium alginate) capsules with different indicators were adopted to combinate as designed programmable colorimetric chips. We collected 4600 colorimetric response images as the data set and assessed two DL algorithms and seven machine learning (ML) algorithms. Glucose, pH, and lactate in human sweat could be facilely and 100% accurately classified and quantified by the convolutional neural network (CNN) DL algorithm, and the testing results of actual sweat via the DL-assisted colorimetric approach match 91.0-99.7% with the laboratory measurements. Class activation mapping (CAM) was processed to visualize the inner working mechanism of CNN operation, which could help to verify and explicate the design rationality of colorimetric chips. The explainable DL-assisted programmable colorimetric chip provided an "end-to-end" strategy to ascertain the black box of the DL algorithm, promoted software design or principium optimization, and contributed facile indicators for clinical monitoring, disease prevention, and even new scientific discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的问雁完成签到,获得积分10
1秒前
zhiweiyan完成签到,获得积分10
2秒前
JamesPei应助a553355采纳,获得10
2秒前
吾心吾行关注了科研通微信公众号
2秒前
孙子文发布了新的文献求助10
2秒前
哇咔咔完成签到 ,获得积分10
3秒前
3秒前
郑总完成签到 ,获得积分10
8秒前
魏笑白完成签到 ,获得积分10
8秒前
上官若男应助mia采纳,获得10
10秒前
畅畅完成签到 ,获得积分10
12秒前
没有昵称完成签到 ,获得积分10
12秒前
13秒前
峰feng完成签到 ,获得积分10
14秒前
15秒前
子阅完成签到 ,获得积分10
18秒前
博修发布了新的文献求助10
20秒前
23秒前
idiom完成签到 ,获得积分10
23秒前
知性的颜完成签到 ,获得积分10
25秒前
You完成签到 ,获得积分10
25秒前
大模型应助孙子文采纳,获得10
26秒前
曾天祥应助博修采纳,获得100
26秒前
27秒前
禹山河发布了新的文献求助30
27秒前
丘比特应助YiXianCoA采纳,获得10
28秒前
呆呆不呆Zz完成签到,获得积分10
31秒前
lj完成签到 ,获得积分10
34秒前
ZXH发布了新的文献求助10
34秒前
38秒前
40秒前
41秒前
自然的茉莉完成签到,获得积分10
41秒前
CYL07完成签到 ,获得积分10
44秒前
Mankind发布了新的文献求助10
45秒前
scfsl发布了新的文献求助10
46秒前
49秒前
53秒前
量子星尘发布了新的文献求助10
55秒前
55秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024