Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study

医学 列线图 乳腺癌 接收机工作特性 队列 腋窝淋巴结 前哨淋巴结 肿瘤科 淋巴结 放射科 新辅助治疗 内科学 癌症
作者
Jionghui Gu,Tong Tong,Dong Xu,Cheng Fang,Chengyu Fang,Chang He,Jing Wang,Baohua Wang,Xin Yang,Kun Wang,Jie Tian,Tianan Jiang
出处
期刊:Cancer [Wiley]
卷期号:129 (3): 356-366 被引量:41
标识
DOI:10.1002/cncr.34540
摘要

Abatract Background Neoadjuvant chemotherapy (NAC) can downstage tumors and axillary lymph nodes in breast cancer (BC) patients. However, tumors and axillary response to NAC are not parallel and vary among patients. This study aims to explore the feasibility of deep learning radiomics nomogram (DLRN) for independently predicting the status of tumors and lymph node metastasis (LNM) after NAC. Methods In total, 484 BC patients who completed NAC from two hospitals (H1: 297 patients in the training cohort and 99 patients in the validation cohort; H2: 88 patients in the test cohort) were retrospectively enrolled. The authors developed two deep learning radiomics (DLR) models for personalized prediction of the tumor pathologic complete response (PCR) to NAC (DLR‐PCR) and the LNM status (DLR‐LNM) after NAC based on pre‐NAC and after‐NAC ultrasonography images. Furthermore, they proposed two DLRNs (DLRN‐PCR and DLRN‐LNM) for two different tasks based on the clinical characteristics and DLR scores, which were generated from both DLR‐PCR and DLR‐LNM. Results In the validation and test cohorts, DLRN‐PCR exhibited areas under the receiver operating characteristic curves (AUCs) of 0.903 and 0.896 with sensitivities of 91.2% and 75.0%, respectively. DLRN‐LNM achieved AUCs of 0.853 and 0.863, specificities of 82.0% and 81.8%, and negative predictive values of 81.3% and 87.2% in the validation and test cohorts, respectively. The two DLRN models achieved satisfactory predictive performance based on different BC subtypes. Conclusions The proposed DLRN models have the potential to accurately predict the tumor PCR and LNM status after NAC. Plain language summary In this study, we proposed two deep learning radiomics nomogram models based on pre‐neoadjuvant chemotherapy (NAC) and preoperative ultrasonography images for independently predicting the status of tumor and axillary lymph node (ALN) after NAC. A more comprehensive assessment of the patient's condition after NAC can be achieved by predicting the status of the tumor and ALN separately. Our model can potentially provide a noninvasive and personalized method to offer decision support for organ preservation and avoidance of excessive surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的棒棒糖应助NiuNiu4采纳,获得10
刚刚
YJL完成签到 ,获得积分10
1秒前
元谷雪发布了新的文献求助10
2秒前
星辰大海应助bubu采纳,获得10
3秒前
zhangyanxi发布了新的文献求助10
4秒前
JamesPei应助端庄的小蝴蝶采纳,获得10
5秒前
junjun发布了新的文献求助10
6秒前
6秒前
6秒前
MOLLY完成签到,获得积分10
8秒前
不安慕蕊完成签到,获得积分10
10秒前
如常发布了新的文献求助10
11秒前
12秒前
好吃的烤雞完成签到,获得积分10
15秒前
15秒前
华仔应助鹿见林采纳,获得10
15秒前
搜集达人应助鹿见林采纳,获得10
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
枫叶应助科研通管家采纳,获得10
15秒前
加菲丰丰应助科研通管家采纳,获得10
15秒前
ycccccc发布了新的文献求助30
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
aa完成签到,获得积分10
16秒前
无心发布了新的文献求助10
17秒前
17秒前
19秒前
汉堡包应助黄建雨采纳,获得10
19秒前
19秒前
Orange应助自信的眉毛采纳,获得30
20秒前
StevenZhao发布了新的文献求助10
20秒前
如常完成签到,获得积分20
20秒前
S77发布了新的文献求助10
20秒前
21秒前
星辰大海应助Naruto采纳,获得20
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652029
求助须知:如何正确求助?哪些是违规求助? 3216197
关于积分的说明 9711172
捐赠科研通 2924058
什么是DOI,文献DOI怎么找? 1601466
邀请新用户注册赠送积分活动 754190
科研通“疑难数据库(出版商)”最低求助积分说明 732987