清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing the reliability and accuracy of AI-enabled diagnosis via complementarity-driven deferral to clinicians (CoDoC)

工作流程 人工智能 计算机科学 机器学习 假阳性悖论 认证 工作量 假阳性和假阴性 诊断准确性 医学 医学物理学 放射科 政治学 数据库 操作系统 法学
作者
Krishnamurthy Dvijotham,Jim Winkens,Melih Barsbey,Sumedh Ghaisas,Nick Pawlowski,Robert Stanforth,Patricia MacWilliams,Zahra S. Ahmed,Shekoofeh Azizi,Yoram Bachrach,Laura Culp,Mayank Daswani,Jan Freyberg,Christopher Kelly,Atilla P. Kiraly,Scott McKinney,Basil Mustafa,Vivek Natarajan,Krzysztof J. Geras,Jan Witowski
出处
期刊:Research Square - Research Square 被引量:2
标识
DOI:10.21203/rs.3.rs-2231672/v1
摘要

Abstract Diagnostic AI systems trained using deep learning have been shown to achieve expert-level identification of diseases in multiple medical imaging settings 1,2 . However, such systems are not always reliable and can fail in cases diagnosed accurately by clinicians and vice versa 3 . Mechanisms for leveraging this complementarity by learning to select optimally between discordant decisions of AIs and clinicians have remained largely unexplored in healthcare 4 , yet have the potential to achieve levels of performance that exceed that possible from either AI or clinician alone 4 . We develop a Complementarity-driven Deferral-to-Clinical Workflow (CoDoC) system that can learn to decide when to rely on a diagnostic AI model and when to defer to a clinician or their workflow. We show that our system is compatible with diagnostic AI models from multiple manufacturers, obtaining enhanced accuracy (sensitivity and/or specificity) relative to clinician-only or AI-only baselines in clinical workflows that screen for breast cancer or tuberculosis. For breast cancer, we demonstrate the first system that exceeds the accuracy of double-reading with arbitration (the “gold standard” of care) in a large representative UK screening program, with 25% reduction in false positives despite equivalent true-positive detection, while achieving a 66% reduction in clinical workload. In two separate US datasets, CoDoC exceeds the accuracy of single-reading by board certified radiologists and two different standalone state-of-the-art AI systems, with generalisation of this finding in different diagnostic AI manufacturers. For TB screening with chest X-rays, CoDoC improved specificity (while maintaining sensitivity) compared to standalone AI or clinicians for 3 of 5 commercially available diagnostic AI systems (5–15% reduction in false positives). Further, we show the limits of confidence score based deferral systems for medical AI, by demonstrating that no deferral strategy could have achieved significant improvement on the remaining two diagnostic AI systems. Our comprehensive assessment demonstrates that the superiority of CoDoC is sustained in multiple realistic stress tests for generalisation of medical AI tools along four axes: variation in the medical imaging modality; variation in clinical settings and human experts; different clinical deferral pathways within a given modality; and different AI softwares. Further, given the simplicity of CoDoC we believe that practitioners can easily adapt it and we provide an open-source implementation to encourage widespread further research and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助150
49秒前
量子星尘发布了新的文献求助10
56秒前
量子星尘发布了新的文献求助10
1分钟前
叽里呱啦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LZQ发布了新的文献求助10
1分钟前
111完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Miley关注了科研通微信公众号
1分钟前
LRR发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
LRR完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
可爱的函函应助Xulun采纳,获得10
3分钟前
zzhui完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ukz37752应助科研通管家采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
LZQ发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
淮之滨完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Miley完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222233
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538