Rational Design of NiSe/ReSe2Nanocomposite For Efficient Electrochemical Hydrogen Evolution Reaction

塔菲尔方程 纳米复合材料 电催化剂 电化学 化学工程 材料科学 电解 催化作用 电极 纳米技术 化学 物理化学 电解质 有机化学 工程类
作者
Fozia Sultana,Muhammad Mushtaq,Sultan Althahban,Tabassum Ferdous,Samreena Firdous,Abid Zaman,Muhammad Azeem,Qing Yang
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:169 (11): 116512-116512 被引量:5
标识
DOI:10.1149/1945-7111/aca2eb
摘要

The hydrogen evolution reaction (HER) in renewable energy systems has long been a fascinating process, but designing highly efficient and ultrastable electrocatalysts is challenging. Transition metal-based heterostructure nanohybrids are currently drawing more interest in the field of electrolysis because nanohybids can optimize kinetic processes while simultaneously lowering charge transfer resistance and increasing the electrochemically active electrode’s surface area at the reaction interface. Here, we propose a concept for a two-step colloidal hot injection electrocatalyst based on NiSe/ReSe 2 nanocomposites that is extremely effective for hydrogen evolution under acidic conditions. The as-obtained nanocomposite material worked efficiently, attaining a current density of 10 mA cm −2 at a substantially lower over-potential of 120 mV vs RHE as compared to each of the individual components i.e. NiSe nanoparticles and ReSe 2 nanosheets. As single component catalysts, ReSe 2 nanosheets and NiSe nanoparticles, however, achieved current densities of 10 mA cm −2 at higher overpotentials of 172 mV and 221 mV, respectively. Even more intriguingly, the NiS/ReSe 2 nanocomposite is believed to give a faster kinetic process for HER, as evidenced by a Tafel slope of 115 mV dec −1 , which certainly is lower than that of the 179 mV dec −1 and 190 mV dec −1 for pure NiSe and ReSe 2 , respectively. NiSe nanocrystallites and ReSe 2 nanosheets were assumed to be working in a synergistic manner to generate the electronic structural modification that led to the noticeably increased electrocatalytic properties. In order to make highly tuned electrocatalysts in solids, we anticipate that the fabrication of hybrid structures will be a successful strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助何糖采纳,获得10
1秒前
桐桐应助美丽的芷烟采纳,获得10
1秒前
野子完成签到,获得积分10
2秒前
情怀应助小D采纳,获得30
3秒前
yuan发布了新的文献求助10
3秒前
berry发布了新的文献求助10
4秒前
4秒前
淡淡采白发布了新的文献求助10
5秒前
思源应助勤恳慕蕊采纳,获得10
5秒前
知犯何逆完成签到 ,获得积分10
6秒前
啊哈完成签到,获得积分10
6秒前
7秒前
7秒前
Draven完成签到 ,获得积分10
7秒前
tmpstlml发布了新的文献求助10
8秒前
张红梨完成签到,获得积分10
8秒前
迷迷完成签到,获得积分20
9秒前
9秒前
科研通AI2S应助chen采纳,获得10
10秒前
穿山甲坐飞机完成签到 ,获得积分10
10秒前
11秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
11秒前
科研通AI5应助经年采纳,获得10
11秒前
11秒前
勤劳晓亦应助木头人采纳,获得10
12秒前
科研通AI5应助想瘦的海豹采纳,获得10
12秒前
13秒前
科研通AI5应助adazbd采纳,获得10
13秒前
bkagyin应助皮皮桂采纳,获得10
13秒前
14秒前
重要的哈密瓜完成签到 ,获得积分10
14秒前
会飞的云完成签到 ,获得积分10
15秒前
15秒前
毕不了业的凡阿哥完成签到,获得积分10
15秒前
野子发布了新的文献求助10
15秒前
berry完成签到,获得积分10
16秒前
17秒前
LUNWENREQUEST发布了新的文献求助10
17秒前
大模型应助匹诺曹采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808