Rational Design of NiSe/ReSe2Nanocomposite For Efficient Electrochemical Hydrogen Evolution Reaction

塔菲尔方程 纳米复合材料 电催化剂 电化学 化学工程 材料科学 电解 催化作用 电极 纳米技术 化学 物理化学 电解质 有机化学 工程类
作者
Fozia Sultana,Muhammad Mushtaq,Sultan Althahban,Tabassum Ferdous,Samreena Firdous,Abid Zaman,Muhammad Azeem,Qing Yang
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:169 (11): 116512-116512 被引量:5
标识
DOI:10.1149/1945-7111/aca2eb
摘要

The hydrogen evolution reaction (HER) in renewable energy systems has long been a fascinating process, but designing highly efficient and ultrastable electrocatalysts is challenging. Transition metal-based heterostructure nanohybrids are currently drawing more interest in the field of electrolysis because nanohybids can optimize kinetic processes while simultaneously lowering charge transfer resistance and increasing the electrochemically active electrode’s surface area at the reaction interface. Here, we propose a concept for a two-step colloidal hot injection electrocatalyst based on NiSe/ReSe 2 nanocomposites that is extremely effective for hydrogen evolution under acidic conditions. The as-obtained nanocomposite material worked efficiently, attaining a current density of 10 mA cm −2 at a substantially lower over-potential of 120 mV vs RHE as compared to each of the individual components i.e. NiSe nanoparticles and ReSe 2 nanosheets. As single component catalysts, ReSe 2 nanosheets and NiSe nanoparticles, however, achieved current densities of 10 mA cm −2 at higher overpotentials of 172 mV and 221 mV, respectively. Even more intriguingly, the NiS/ReSe 2 nanocomposite is believed to give a faster kinetic process for HER, as evidenced by a Tafel slope of 115 mV dec −1 , which certainly is lower than that of the 179 mV dec −1 and 190 mV dec −1 for pure NiSe and ReSe 2 , respectively. NiSe nanocrystallites and ReSe 2 nanosheets were assumed to be working in a synergistic manner to generate the electronic structural modification that led to the noticeably increased electrocatalytic properties. In order to make highly tuned electrocatalysts in solids, we anticipate that the fabrication of hybrid structures will be a successful strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共勉YOUNG完成签到,获得积分10
1秒前
Lucas应助cloud采纳,获得10
2秒前
zhw发布了新的文献求助10
2秒前
3秒前
观澜发布了新的文献求助10
5秒前
CipherSage应助感谢大家采纳,获得10
6秒前
Weilang发布了新的文献求助10
6秒前
hanhan发布了新的文献求助10
7秒前
7秒前
cheryjay发布了新的文献求助10
9秒前
dj发布了新的文献求助10
10秒前
10秒前
10秒前
zhw完成签到,获得积分10
11秒前
雨寒完成签到 ,获得积分10
11秒前
wshwx完成签到,获得积分10
12秒前
田乐天发布了新的文献求助10
15秒前
17秒前
zpy完成签到,获得积分10
17秒前
隐形曼青应助拉长的花生采纳,获得10
17秒前
核桃发布了新的文献求助10
18秒前
GGbond完成签到 ,获得积分10
19秒前
首席或雪月完成签到,获得积分10
20秒前
赘婿应助xxx采纳,获得10
20秒前
华仔应助水123采纳,获得10
22秒前
科研通AI6应助rr123456采纳,获得30
22秒前
一个西藏发布了新的文献求助10
24秒前
yyq617569158完成签到,获得积分10
24秒前
24秒前
fz应助观澜采纳,获得20
25秒前
28秒前
daigang发布了新的文献求助30
30秒前
lpydz完成签到,获得积分10
30秒前
专注的水壶完成签到 ,获得积分10
30秒前
31秒前
李可以完成签到 ,获得积分10
31秒前
姗珊发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
32秒前
拉长的花生完成签到,获得积分20
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832