Rational Design of NiSe/ReSe2Nanocomposite For Efficient Electrochemical Hydrogen Evolution Reaction

塔菲尔方程 纳米复合材料 电催化剂 电化学 化学工程 材料科学 电解 催化作用 电极 纳米技术 化学 物理化学 电解质 有机化学 工程类
作者
Fozia Sultana,Muhammad Mushtaq,Sultan Althahban,Tabassum Ferdous,Samreena Firdous,Abid Zaman,Muhammad Azeem,Qing Yang
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:169 (11): 116512-116512 被引量:5
标识
DOI:10.1149/1945-7111/aca2eb
摘要

The hydrogen evolution reaction (HER) in renewable energy systems has long been a fascinating process, but designing highly efficient and ultrastable electrocatalysts is challenging. Transition metal-based heterostructure nanohybrids are currently drawing more interest in the field of electrolysis because nanohybids can optimize kinetic processes while simultaneously lowering charge transfer resistance and increasing the electrochemically active electrode’s surface area at the reaction interface. Here, we propose a concept for a two-step colloidal hot injection electrocatalyst based on NiSe/ReSe 2 nanocomposites that is extremely effective for hydrogen evolution under acidic conditions. The as-obtained nanocomposite material worked efficiently, attaining a current density of 10 mA cm −2 at a substantially lower over-potential of 120 mV vs RHE as compared to each of the individual components i.e. NiSe nanoparticles and ReSe 2 nanosheets. As single component catalysts, ReSe 2 nanosheets and NiSe nanoparticles, however, achieved current densities of 10 mA cm −2 at higher overpotentials of 172 mV and 221 mV, respectively. Even more intriguingly, the NiS/ReSe 2 nanocomposite is believed to give a faster kinetic process for HER, as evidenced by a Tafel slope of 115 mV dec −1 , which certainly is lower than that of the 179 mV dec −1 and 190 mV dec −1 for pure NiSe and ReSe 2 , respectively. NiSe nanocrystallites and ReSe 2 nanosheets were assumed to be working in a synergistic manner to generate the electronic structural modification that led to the noticeably increased electrocatalytic properties. In order to make highly tuned electrocatalysts in solids, we anticipate that the fabrication of hybrid structures will be a successful strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自然有手就行完成签到,获得积分10
1秒前
1秒前
时光友岸完成签到,获得积分10
2秒前
Iris发布了新的文献求助10
2秒前
icebear发布了新的文献求助10
2秒前
ding应助小吴同志采纳,获得10
2秒前
3秒前
3秒前
不困完成签到,获得积分10
4秒前
大模型应助Elma采纳,获得10
4秒前
后来发布了新的文献求助10
4秒前
喵山王发布了新的文献求助10
4秒前
Sunny完成签到,获得积分10
4秒前
4秒前
asdfqwer应助Jasmine采纳,获得10
5秒前
13201099463完成签到,获得积分10
5秒前
ASDq完成签到,获得积分10
6秒前
icebear完成签到,获得积分10
8秒前
ladder发布了新的文献求助10
9秒前
9秒前
ARIA发布了新的文献求助10
10秒前
风清月明已深秋完成签到,获得积分10
10秒前
Wein发布了新的文献求助10
10秒前
我是老大应助喵山王采纳,获得10
11秒前
选择五个错四个完成签到 ,获得积分10
12秒前
Sere完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
酷钱完成签到 ,获得积分10
13秒前
着急的白柏关注了科研通微信公众号
13秒前
19秒前
19秒前
19秒前
shooin完成签到,获得积分0
19秒前
完美世界应助叶绿体机智采纳,获得10
19秒前
XiaoXiao完成签到,获得积分10
20秒前
wangyb发布了新的文献求助10
20秒前
深情安青应助感性的忆灵采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776