MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud

点云 鉴定(生物学) 计算机科学 卷积神经网络 人工智能 曲面(拓扑) 机身 逆向工程 不变(物理) 转化(遗传学) 点(几何) 算法 计算机视觉 模式识别(心理学) 工程类 几何学 数学 结构工程 生物化学 化学 植物 基因 数学物理 生物 程序设计语言
作者
Yinan Wang,Wenbo Sun,Jionghua Jin,Zhenyu Kong,Xiaowei Yue
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:19
标识
DOI:10.1115/1.4056005
摘要

Abstract Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
dis完成签到,获得积分10
2秒前
从容听南发布了新的文献求助20
4秒前
烟花应助Justtry采纳,获得10
4秒前
SN完成签到 ,获得积分10
4秒前
与离完成签到 ,获得积分10
7秒前
老迟到的幼枫完成签到,获得积分10
7秒前
达尔文1完成签到 ,获得积分10
7秒前
KKDT完成签到 ,获得积分10
8秒前
研友_LMBAXn完成签到,获得积分10
10秒前
红衣落花倾城完成签到 ,获得积分10
11秒前
思量博千金完成签到,获得积分10
11秒前
whuhustwit完成签到,获得积分10
12秒前
12秒前
欢喜可愁完成签到 ,获得积分10
13秒前
VelesAlexei完成签到,获得积分10
13秒前
润物无声完成签到,获得积分10
13秒前
木子完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
无情的薯片完成签到,获得积分10
15秒前
荣浩宇完成签到 ,获得积分10
16秒前
16秒前
17秒前
Justtry发布了新的文献求助10
17秒前
随风完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
达尔文完成签到 ,获得积分10
22秒前
hi_traffic完成签到,获得积分10
23秒前
23秒前
freebird完成签到,获得积分10
24秒前
包容的忆灵完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
寒冷尔柳完成签到 ,获得积分10
26秒前
28秒前
jie完成签到 ,获得积分10
28秒前
yywang发布了新的文献求助10
28秒前
小平完成签到 ,获得积分10
29秒前
ROMANTIC完成签到 ,获得积分10
29秒前
mickiller完成签到,获得积分10
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006