MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud

点云 鉴定(生物学) 计算机科学 卷积神经网络 人工智能 曲面(拓扑) 机身 逆向工程 不变(物理) 转化(遗传学) 点(几何) 算法 计算机视觉 模式识别(心理学) 工程类 几何学 数学 结构工程 基因 生物 植物 生物化学 化学 数学物理 程序设计语言
作者
Yinan Wang,Wenbo Sun,Jionghua Jin,Zhenyu Kong,Xiaowei Yue
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:12
标识
DOI:10.1115/1.4056005
摘要

Abstract Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周奥金发布了新的文献求助10
刚刚
kento驳回了Frank应助
1秒前
eyeland完成签到 ,获得积分10
1秒前
隐形曼青应助轻松的雪枫采纳,获得10
2秒前
过客发布了新的文献求助10
3秒前
舟山第一食客完成签到,获得积分20
4秒前
Megumi发布了新的文献求助10
4秒前
ypp完成签到,获得积分10
4秒前
孤独的半芹完成签到,获得积分10
4秒前
自然馈赠发布了新的文献求助10
5秒前
突突突完成签到,获得积分10
5秒前
5秒前
6秒前
于忠波发布了新的文献求助10
6秒前
7秒前
小蚂蚁发布了新的文献求助20
8秒前
荆轲刺秦王完成签到 ,获得积分10
8秒前
passenger.发布了新的文献求助10
9秒前
淡淡宇宇宝宝完成签到,获得积分10
9秒前
9秒前
杜十二发布了新的文献求助10
9秒前
xuxu完成签到,获得积分10
11秒前
CodeCraft应助yqx采纳,获得10
11秒前
13秒前
所所应助斑比采纳,获得10
14秒前
欧文完成签到,获得积分10
15秒前
15秒前
passenger.完成签到,获得积分10
15秒前
Trista0036完成签到 ,获得积分10
16秒前
16秒前
黑魔仙小玥完成签到,获得积分20
16秒前
CipherSage应助平常山河采纳,获得30
17秒前
杜十二完成签到,获得积分10
17秒前
18秒前
欧文发布了新的文献求助10
19秒前
19秒前
19秒前
彭于晏应助WD采纳,获得10
20秒前
20秒前
刘沛沛完成签到,获得积分20
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Treatise on Geomorphology(2nd Edition - March 1, 2022) 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3070024
求助须知:如何正确求助?哪些是违规求助? 2724039
关于积分的说明 7483616
捐赠科研通 2371113
什么是DOI,文献DOI怎么找? 1257302
科研通“疑难数据库(出版商)”最低求助积分说明 609889
版权声明 596879