亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud

点云 鉴定(生物学) 计算机科学 卷积神经网络 人工智能 曲面(拓扑) 机身 逆向工程 不变(物理) 转化(遗传学) 点(几何) 算法 计算机视觉 模式识别(心理学) 工程类 几何学 数学 结构工程 基因 生物 植物 生物化学 化学 数学物理 程序设计语言
作者
Yinan Wang,Wenbo Sun,Jionghua Jin,Zhenyu Kong,Xiaowei Yue
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:19
标识
DOI:10.1115/1.4056005
摘要

Abstract Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三木完成签到,获得积分10
1秒前
微S发布了新的文献求助10
6秒前
30秒前
31秒前
林狗发布了新的文献求助10
35秒前
闻巷雨完成签到 ,获得积分10
42秒前
Buyu0713完成签到,获得积分10
46秒前
shier完成签到 ,获得积分10
47秒前
clei完成签到 ,获得积分10
56秒前
56秒前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
宝贝丫头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
12完成签到,获得积分10
1分钟前
Zrrr完成签到 ,获得积分10
1分钟前
雨灵完成签到,获得积分10
1分钟前
1分钟前
研友_Zlepz8完成签到,获得积分0
1分钟前
雨灵发布了新的文献求助10
1分钟前
小马甲应助研友_Zlepz8采纳,获得10
1分钟前
1分钟前
mellow完成签到,获得积分10
1分钟前
文静人达发布了新的文献求助10
1分钟前
1分钟前
aliu发布了新的文献求助30
1分钟前
1分钟前
研友_Zlepz8发布了新的文献求助10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
大国完成签到,获得积分20
1分钟前
司空晓山发布了新的文献求助20
2分钟前
C_关闭了C_文献求助
2分钟前
曹兆发布了新的文献求助100
2分钟前
失眠呆呆鱼完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898