MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud

点云 鉴定(生物学) 计算机科学 卷积神经网络 人工智能 曲面(拓扑) 机身 逆向工程 不变(物理) 转化(遗传学) 点(几何) 算法 计算机视觉 模式识别(心理学) 工程类 几何学 数学 结构工程 生物化学 化学 植物 基因 数学物理 生物 程序设计语言
作者
Yinan Wang,Wenbo Sun,Jionghua Jin,Zhenyu Kong,Xiaowei Yue
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:19
标识
DOI:10.1115/1.4056005
摘要

Abstract Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
刚刚
Sunny发布了新的文献求助30
1秒前
科研通AI2S应助顺心的筮采纳,获得10
1秒前
1秒前
1秒前
2秒前
maox1aoxin应助wen采纳,获得50
2秒前
2秒前
3秒前
斯文败类应助fool采纳,获得10
3秒前
伊吹风子完成签到 ,获得积分10
3秒前
如意白亦发布了新的文献求助10
3秒前
脑洞疼应助机智小懒虫采纳,获得10
3秒前
3秒前
科研通AI5应助kiminonawa采纳,获得10
4秒前
再睡一夏完成签到,获得积分10
4秒前
4秒前
思源应助缥缈的青旋采纳,获得10
4秒前
LCFXR发布了新的文献求助10
4秒前
4秒前
纯情的岩发布了新的文献求助10
5秒前
单向度的人完成签到,获得积分10
5秒前
加菲丰丰应助zhaoshasha采纳,获得30
5秒前
隐形曼青应助cwy采纳,获得10
5秒前
祖冰绿完成签到,获得积分10
5秒前
刻苦大米发布了新的文献求助10
5秒前
行者完成签到,获得积分10
5秒前
苏栀完成签到,获得积分10
6秒前
hjs发布了新的文献求助10
6秒前
Zpk完成签到,获得积分10
6秒前
术亦旺完成签到,获得积分10
7秒前
电催化皮皮完成签到,获得积分10
7秒前
无聊的小鸽子完成签到,获得积分10
8秒前
cloud完成签到 ,获得积分10
8秒前
8秒前
科研通AI5应助幻人采纳,获得10
8秒前
8秒前
小张发布了新的文献求助10
8秒前
yuhaha完成签到 ,获得积分10
9秒前
guajiguaji发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Conference Record, IAS Annual Meeting 1977 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539974
求助须知:如何正确求助?哪些是违规求助? 3117517
关于积分的说明 9331271
捐赠科研通 2815252
什么是DOI,文献DOI怎么找? 1547491
邀请新用户注册赠送积分活动 720990
科研通“疑难数据库(出版商)”最低求助积分说明 712395