MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud

点云 鉴定(生物学) 计算机科学 卷积神经网络 人工智能 曲面(拓扑) 机身 逆向工程 不变(物理) 转化(遗传学) 点(几何) 算法 计算机视觉 模式识别(心理学) 工程类 几何学 数学 结构工程 基因 生物 植物 生物化学 化学 数学物理 程序设计语言
作者
Yinan Wang,Wenbo Sun,Jionghua Jin,Zhenyu Kong,Xiaowei Yue
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (3) 被引量:19
标识
DOI:10.1115/1.4056005
摘要

Abstract Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术laji完成签到 ,获得积分10
刚刚
FMHChan完成签到,获得积分10
1秒前
小竖完成签到 ,获得积分10
4秒前
Leeu完成签到,获得积分10
5秒前
5秒前
微笑的小霸王完成签到,获得积分10
7秒前
聂先生完成签到,获得积分10
7秒前
小马完成签到 ,获得积分10
9秒前
YZY完成签到 ,获得积分10
10秒前
村长热爱美丽完成签到 ,获得积分10
11秒前
14秒前
14秒前
Aimee完成签到 ,获得积分10
14秒前
醉熏的幻莲完成签到 ,获得积分10
15秒前
发发完成签到,获得积分10
16秒前
incu8us发布了新的文献求助10
19秒前
领导范儿应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
亮亮完成签到,获得积分10
22秒前
vitamin完成签到 ,获得积分10
24秒前
自信的访云完成签到,获得积分10
26秒前
孤独剑完成签到 ,获得积分10
27秒前
LHE发布了新的文献求助10
30秒前
玫瑰遇上奶油完成签到 ,获得积分10
35秒前
胡图图完成签到 ,获得积分10
36秒前
大个应助WYN采纳,获得10
37秒前
犹豫的若完成签到,获得积分10
38秒前
孔甜甜完成签到,获得积分10
38秒前
C_Li完成签到,获得积分0
38秒前
叶子完成签到 ,获得积分10
38秒前
naiyouqiu1989完成签到,获得积分10
41秒前
LHE完成签到,获得积分10
42秒前
经卿完成签到 ,获得积分10
43秒前
lyh完成签到,获得积分10
43秒前
纸条条完成签到 ,获得积分10
45秒前
47秒前
lijing3026完成签到,获得积分10
49秒前
TTOM发布了新的文献求助10
49秒前
蝈蝈完成签到,获得积分10
50秒前
15940203654完成签到 ,获得积分10
51秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347654
求助须知:如何正确求助?哪些是违规求助? 4481904
关于积分的说明 13948212
捐赠科研通 4380257
什么是DOI,文献DOI怎么找? 2406857
邀请新用户注册赠送积分活动 1399452
关于科研通互助平台的介绍 1372629