材料科学
热稳定性
储能
四方晶系
陶瓷
带隙
热能储存
相(物质)
电介质
复合材料
光电子学
化学工程
热力学
物理
工程类
功率(物理)
有机化学
化学
作者
Wenjun Cao,Renju Lin,Pengfei Chen,Feng Li,Binghui Ge,Dongsheng Song,Jian Zhang,Zhenxiang Cheng,Chunchang Wang
标识
DOI:10.1021/acsami.2c17170
摘要
Lead-free relaxor ferroelectric ceramics with ultrahigh energy-storage performance are vital for pulsed power systems. We herein propose a strategy of phase and band structure engineering for high-performance energy storage. To demonstrate the effectiveness of this strategy, (1 - x)(0.75Na0.5Bi0.5TiO3-0.25SrTiO3)-xCaTi0.875Nb0.1O3 (NBT-ST-xCTN, x = 0.1, 0.2, 0.3, 0.4, and 0.5) samples were designed and fabricated via the solid-state reaction method. The linear dielectric CTN was used as a modulator to tune both phase and band structures of the tested system. Our results show that both rhombohedral phase (R-phase) and tetragonal phase (T-phase) coexist in the samples. The R/T ratio decreases, while the band gap increases with increasing CTN content. The best energy-storage properties with large energy storage density (Wrec = 7.13 J/cm3), a high efficiency (η = 90.3%), and an ultrafast discharge time (25 ns) were achieved in the NBT-ST-0.4CTN sample with R/T = 0.121. Importantly, along with its excellent energy-storage performance, the sample exhibited superior thermal stability with the variations of Wrec ≤ 7% and η ≤ 10% over the wide temperature range of 233-413 K. This work suggests that this engineering of phase and band structures is a promising strategy to achieve superior energy-storage properties in lead-free ceramics.
科研通智能强力驱动
Strongly Powered by AbleSci AI